File: test_health_checks.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (128 lines) | stat: -rw-r--r-- 4,262 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import time

import pytest
from pytest import raises

from hypothesis import HealthCheck, Phase, given, seed, settings, strategies as st
from hypothesis.errors import FailedHealthCheck
from hypothesis.internal.conjecture.data import ConjectureData
from hypothesis.internal.conjecture.engine import BUFFER_SIZE
from hypothesis.internal.entropy import deterministic_PRNG
from hypothesis.strategies._internal.lazy import LazyStrategy

pytestmark = pytest.mark.skipif(
    settings._current_profile == "crosshair", reason="slow - large number of symbolics"
)

large_strategy = st.binary(min_size=7000, max_size=7000)
too_large_strategy = st.tuples(large_strategy, large_strategy)


def test_large_data_will_fail_a_health_check():
    @given(st.none() | too_large_strategy)
    @settings(database=None)
    def test(x):
        pass

    with raises(FailedHealthCheck) as e:
        test()
    assert "maximum allowed entropy" in e.value.args[0]


def test_large_base_example_fails_health_check():
    @given(large_strategy)
    def test(b):
        pass

    with pytest.raises(FailedHealthCheck) as exc:
        test()

    assert str(HealthCheck.large_base_example) in str(exc.value)


def test_example_that_shrinks_to_overrun_fails_health_check():
    @given(too_large_strategy | st.none())
    def test(b):
        pass

    with pytest.raises(FailedHealthCheck) as exc:
        test()

    assert str(HealthCheck.large_base_example) in str(exc.value)


slow_down_init = True


def slow_init_integers(*args, **kwargs):
    # This mimics st.characters() or st.text(), which perform some
    # expensive Unicode calculations when the cache is empty.
    global slow_down_init
    if slow_down_init:
        time.sleep(0.5)  # We monkeypatch time, so this is fast
        slow_down_init = False
    return st.integers(*args, **kwargs)


@given(st.data())
def test_lazy_slow_initialization_issue_2108_regression(data):
    # Slow init in strategies wrapped in a LazyStrategy, inside an interactive draw,
    # should be attributed to drawing from the strategy (not the test function).
    # Specifically, this used to fail with a DeadlineExceeded error.
    data.draw(LazyStrategy(slow_init_integers, (), {}))


def test_does_not_trigger_health_check_on_simple_strategies(monkeypatch):
    existing_draw = ConjectureData.draw_integer

    # We need to make drawing data artificially slow in order to trigger this
    # effect. This isn't actually slow because time is fake in our CI, but
    # we need it to pretend to be.
    def draw_integer(*args, **kwargs):
        time.sleep(0.001)
        return existing_draw(*args, **kwargs)

    monkeypatch.setattr(ConjectureData, "draw_integer", draw_integer)

    with deterministic_PRNG():
        for _ in range(100):
            # Setting max_examples=11 ensures we have enough examples for the
            # health checks to finish running, but cuts the generation short
            # after that point to allow this test to run in reasonable time.
            @settings(database=None, max_examples=11, phases=[Phase.generate])
            @given(st.integers())
            def test(n):
                pass

            test()


def test_does_not_trigger_health_check_when_most_examples_are_small():
    for i in range(10):

        @seed(i)
        # Setting max_examples=11 ensures we have enough examples for the
        # health checks to finish running, but cuts the generation short
        # after that point to allow this test to run in reasonable time.
        @settings(database=None, max_examples=11, phases=[Phase.generate])
        @given(
            st.integers(0, 100).flatmap(
                lambda n: st.binary(
                    min_size=min(n * 100, BUFFER_SIZE), max_size=n * 100
                )
            )
        )
        def test(b):
            pass

        test()