1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import inspect
from collections import namedtuple
import pytest
from hypothesis import Phase, settings as Settings, strategies as st
from hypothesis.stateful import (
Bundle,
RuleBasedStateMachine,
invariant,
precondition,
rule,
run_state_machine_as_test,
)
from tests.common.utils import Why
def run_to_notes(TestClass):
TestCase = TestClass.TestCase
# don't add explain phase notes to the error
TestCase.settings = Settings(phases=set(Phase) - {Phase.explain}, max_examples=500)
try:
TestCase().runTest()
except AssertionError as err:
return err.__notes__
raise RuntimeError("Expected an assertion error")
def assert_runs_to_output(TestClass, output):
# remove the first line, which is always "Falsfying example:"
actual = "\n".join(run_to_notes(TestClass)[1:])
assert actual == inspect.cleandoc(output.strip())
Leaf = namedtuple("Leaf", ("label",))
Split = namedtuple("Split", ("left", "right"))
class BalancedTrees(RuleBasedStateMachine):
trees = Bundle("BinaryTree")
@rule(target=trees, x=st.booleans())
def leaf(self, x):
return Leaf(x)
@rule(target=trees, left=trees, right=trees)
def split(self, left, right):
return Split(left, right)
@rule(tree=trees)
def test_is_balanced(self, tree):
if isinstance(tree, Leaf):
return
else:
assert abs(self.size(tree.left) - self.size(tree.right)) <= 1
self.test_is_balanced(tree.left)
self.test_is_balanced(tree.right)
def size(self, tree):
if isinstance(tree, Leaf):
return 1
else:
return 1 + self.size(tree.left) + self.size(tree.right)
class DepthCharge:
def __init__(self, value):
if value is None:
self.depth = 0
else:
self.depth = value.depth + 1
class DepthMachine(RuleBasedStateMachine):
charges = Bundle("charges")
@rule(targets=(charges,), child=charges)
def charge(self, child):
return DepthCharge(child)
@rule(targets=(charges,))
def none_charge(self):
return DepthCharge(None)
@rule(check=charges)
def is_not_too_deep(self, check):
assert check.depth < 3
class RoseTreeStateMachine(RuleBasedStateMachine):
nodes = Bundle("nodes")
@rule(target=nodes, source=st.lists(nodes))
def bunch(self, source):
return source
@rule(source=nodes)
def shallow(self, source):
def d(ls):
if not ls:
return 0
else:
return 1 + max(map(d, ls))
assert d(source) <= 5
class NotTheLastMachine(RuleBasedStateMachine):
stuff = Bundle("stuff")
def __init__(self):
super().__init__()
self.last = None
self.bye_called = False
@rule(target=stuff)
def hi(self):
result = object()
self.last = result
return result
@precondition(lambda self: not self.bye_called)
@rule(v=stuff)
def bye(self, v):
assert v == self.last
self.bye_called = True
class PopulateMultipleTargets(RuleBasedStateMachine):
b1 = Bundle("b1")
b2 = Bundle("b2")
@rule(targets=(b1, b2))
def populate(self):
return 1
@rule(x=b1, y=b2)
def fail(self, x, y):
raise AssertionError
class CanSwarm(RuleBasedStateMachine):
"""This test will essentially never pass if you choose rules uniformly at
random, because every time the snake rule fires we return to the beginning,
so we will tend to undo progress well before we make enough progress for
the test to fail.
This tests our swarm testing functionality in stateful testing by ensuring
that we can sometimes generate long runs of steps which exclude a
particular rule.
"""
def __init__(self):
super().__init__()
self.seen = set()
# The reason this rule takes a parameter is that it ensures that we do not
# achieve "swarming" by by just restricting the alphabet for single byte
# decisions, which is a thing the underlying conjecture engine will
# happily do on its own without knowledge of the rule structure.
@rule(move=st.integers(0, 255))
def ladder(self, move):
self.seen.add(move)
assert len(self.seen) <= 15
@rule()
def snake(self):
self.seen.clear()
bad_machines = (
BalancedTrees,
DepthMachine,
RoseTreeStateMachine,
NotTheLastMachine,
PopulateMultipleTargets,
CanSwarm,
)
for m in bad_machines:
m.TestCase.settings = Settings(m.TestCase.settings, max_examples=1000)
cheap_bad_machines = list(bad_machines)
cheap_bad_machines.remove(BalancedTrees)
with_cheap_bad_machines = pytest.mark.parametrize(
"machine", cheap_bad_machines, ids=[t.__name__ for t in cheap_bad_machines]
)
@pytest.mark.parametrize(
"machine", bad_machines, ids=[t.__name__ for t in bad_machines]
)
def test_bad_machines_fail(machine):
if (
machine in [CanSwarm, RoseTreeStateMachine]
and Settings._current_profile == "crosshair"
):
# and also takes 10/6 minutes respectively, on top of not finding the failure
pytest.xfail(reason=str(Why.undiscovered))
test_class = machine.TestCase
try:
test_class().runTest()
raise RuntimeError("Expected an assertion error")
except AssertionError as err:
notes = err.__notes__
steps = [l for l in notes if "Step " in l or "state." in l]
assert 1 <= len(steps) <= 50
class MyStatefulMachine(RuleBasedStateMachine):
def __init__(self):
self.n_steps = 0
super().__init__()
@rule()
def step(self):
self.n_steps += 1
assert self.n_steps <= 10
class TestMyStatefulMachine(MyStatefulMachine.TestCase):
settings = Settings(derandomize=True, stateful_step_count=5)
def test_multiple_precondition_bug():
# See https://github.com/HypothesisWorks/hypothesis/issues/2861
class MultiplePreconditionMachine(RuleBasedStateMachine):
@rule(x=st.integers())
def good_method(self, x):
pass
@precondition(lambda self: True)
@precondition(lambda self: False)
@rule(x=st.integers())
def bad_method_a(self, x):
raise AssertionError("This rule runs, even though it shouldn't.")
@precondition(lambda self: False)
@precondition(lambda self: True)
@rule(x=st.integers())
def bad_method_b(self, x):
raise AssertionError("This rule might be skipped for the wrong reason.")
@precondition(lambda self: True)
@rule(x=st.integers())
@precondition(lambda self: False)
def bad_method_c(self, x):
raise AssertionError("This rule runs, even though it shouldn't.")
@rule(x=st.integers())
@precondition(lambda self: True)
@precondition(lambda self: False)
def bad_method_d(self, x):
raise AssertionError("This rule runs, even though it shouldn't.")
@precondition(lambda self: True)
@precondition(lambda self: False)
@invariant()
def bad_invariant_a(self):
raise AssertionError("This invariant runs, even though it shouldn't.")
@precondition(lambda self: False)
@precondition(lambda self: True)
@invariant()
def bad_invariant_b(self):
raise AssertionError("This invariant runs, even though it shouldn't.")
@precondition(lambda self: True)
@invariant()
@precondition(lambda self: False)
def bad_invariant_c(self):
raise AssertionError("This invariant runs, even though it shouldn't.")
@invariant()
@precondition(lambda self: True)
@precondition(lambda self: False)
def bad_invariant_d(self):
raise AssertionError("This invariant runs, even though it shouldn't.")
run_state_machine_as_test(MultiplePreconditionMachine)
class UnrelatedCall(RuleBasedStateMachine):
a = Bundle("a")
def __init__(self):
super().__init__()
self.calls = set()
@rule(target=a, a=st.integers())
def add_a(self, a):
self.calls.add("add")
return a
@rule(v=a)
def f(self, v):
self.calls.add("f")
@precondition(lambda self: "add" in self.calls)
@rule(value=st.integers())
def unrelated(self, value):
self.calls.add("unrelated")
@rule()
def invariant(self):
# force all three calls to be made in a particular order (with the
# `unrelated` precondition) so we always shrink to a particular counterexample.
assert len(self.calls) != 3
def test_unrelated_rule_does_not_use_var_reference_repr():
# we are specifically looking for state.unrelated(value=0) not being replaced
# with state.unrelated(value=a_0). The `unrelated` rule is drawing from
# st.integers, not a bundle, so the values should not be conflated even if
# they're both 0.
assert_runs_to_output(
UnrelatedCall,
"""
state = UnrelatedCall()
a_0 = state.add_a(a=0)
state.f(v=a_0)
state.unrelated(value=0)
state.invariant()
state.teardown()
""",
)
class SourceSameAsTarget(RuleBasedStateMachine):
values = Bundle("values")
@rule(target=values, value=st.lists(values))
def f(self, value):
assert len(value) == 0
return value
class SourceSameAsTargetUnclearOrigin(RuleBasedStateMachine):
values = Bundle("values")
def __init__(self):
super().__init__()
self.called = False
@rule(target=values, value=st.just([]) | st.lists(values))
def f(self, value):
assert not self.called
# ensure we get two calls to f before failing. In the minimal failing
# example, both will be from st.just([]).
self.called = True
return value
def test_replaces_when_same_id():
assert_runs_to_output(
SourceSameAsTarget,
f"""
state = {SourceSameAsTarget.__name__}()
values_0 = state.f(value=[])
state.f(value=[values_0])
state.teardown()
""",
)
def test_doesnt_replace_when_different_id():
assert_runs_to_output(
SourceSameAsTargetUnclearOrigin,
f"""
state = {SourceSameAsTargetUnclearOrigin.__name__}()
values_0 = state.f(value=[])
state.f(value=[])
state.teardown()
""",
)
|