File: test_gen_data.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (1275 lines) | stat: -rw-r--r-- 42,103 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import sys
from functools import reduce
from itertools import zip_longest

import numpy as np
import pytest

from hypothesis import (
    HealthCheck,
    Phase,
    assume,
    given,
    note,
    settings,
    strategies as st,
    target,
)
from hypothesis.errors import InvalidArgument, UnsatisfiedAssumption
from hypothesis.extra import numpy as nps
from hypothesis.strategies._internal.lazy import unwrap_strategies

from tests.common.debug import check_can_generate_examples, find_any, minimal
from tests.common.utils import fails_with, flaky

ANY_SHAPE = nps.array_shapes(min_dims=0, max_dims=32, min_side=0, max_side=32)
ANY_NONZERO_SHAPE = nps.array_shapes(min_dims=0, max_dims=32, min_side=1, max_side=32)


@given(nps.arrays(float, ()))
def test_empty_dimensions_are_arrays(x):
    assert isinstance(x, np.ndarray)
    assert x.dtype.kind == "f"


@given(nps.arrays(float, (1, 0, 1)))
def test_can_handle_zero_dimensions(x):
    assert x.shape == (1, 0, 1)


@given(nps.arrays("uint32", (5, 5)))
def test_generates_unsigned_ints(x):
    assert (x >= 0).all()


@given(nps.arrays(int, (1,)))
def test_assert_fits_in_machine_size(x):
    pass


def test_generates_and_minimizes():
    assert (minimal(nps.arrays(float, (2, 2))) == np.zeros(shape=(2, 2))).all()


def test_can_minimize_large_arrays():
    x = minimal(nps.arrays("uint32", 100), lambda x: np.any(x) and not np.all(x))
    assert np.logical_or(x == 0, x == 1).all()
    assert np.count_nonzero(x) in (1, len(x) - 1)


@flaky(max_runs=50, min_passes=1)
def test_can_minimize_float_arrays():
    with np.errstate(over="ignore", invalid="ignore"):
        x = minimal(nps.arrays(float, 50), lambda t: np.nansum(t) >= 1.0)
        assert x.sum() in (1, 50)


class Foo:
    pass


foos = st.tuples().map(lambda _: Foo())


def test_can_create_arrays_of_composite_types():
    arr = minimal(nps.arrays(object, 100, elements=foos))
    for x in arr:
        assert isinstance(x, Foo)


@given(st.lists(st.integers()), st.data())
def test_can_create_zero_dim_arrays_of_lists(x, data):
    arr = data.draw(nps.arrays(object, (), elements=st.just(x)))
    assert arr.shape == ()
    assert arr.dtype == np.dtype(object)
    assert arr.item() == x


def test_can_create_arrays_of_tuples():
    arr = minimal(
        nps.arrays(object, 10, elements=st.tuples(st.integers(), st.integers())),
        lambda x: all(t0 != t1 for t0, t1 in x),
    )
    assert all(a in ((1, 0), (0, 1)) for a in arr)


@given(nps.arrays(object, (2, 2), elements=st.tuples(st.integers())))
def test_does_not_flatten_arrays_of_tuples(arr):
    assert isinstance(arr[0][0], tuple)


@given(
    nps.arrays(object, (2, 2), elements=st.lists(st.integers(), min_size=1, max_size=1))
)
def test_does_not_flatten_arrays_of_lists(arr):
    assert isinstance(arr[0][0], list)


@given(nps.array_shapes())
def test_can_generate_array_shapes(shape):
    assert isinstance(shape, tuple)
    assert all(isinstance(i, int) for i in shape)


@settings(
    deadline=None, max_examples=10, suppress_health_check=[HealthCheck.nested_given]
)
@given(st.integers(0, 10), st.integers(0, 9), st.integers(0), st.integers(0))
def test_minimise_array_shapes(min_dims, dim_range, min_side, side_range):
    smallest = minimal(
        nps.array_shapes(
            min_dims=min_dims,
            max_dims=min_dims + dim_range,
            min_side=min_side,
            max_side=min_side + side_range,
        )
    )
    assert len(smallest) == min_dims
    assert all(k == min_side for k in smallest)


@pytest.mark.parametrize(
    "kwargs", [{"min_side": 100}, {"min_dims": 15}, {"min_dims": 32}]
)
def test_interesting_array_shapes_argument(kwargs):
    check_can_generate_examples(nps.array_shapes(**kwargs))


@given(nps.scalar_dtypes())
def test_can_generate_scalar_dtypes(dtype):
    assert isinstance(dtype, np.dtype)


@settings(max_examples=100)
@given(
    nps.nested_dtypes(
        subtype_strategy=st.one_of(
            nps.scalar_dtypes(), nps.byte_string_dtypes(), nps.unicode_string_dtypes()
        )
    )
)
def test_can_generate_compound_dtypes(dtype):
    assert isinstance(dtype, np.dtype)


@settings(max_examples=100)
@given(
    nps.nested_dtypes(
        subtype_strategy=st.one_of(
            nps.scalar_dtypes(), nps.byte_string_dtypes(), nps.unicode_string_dtypes()
        )
    ).flatmap(lambda dt: nps.arrays(dtype=dt, shape=1))
)
def test_can_generate_data_compound_dtypes(arr):
    # This is meant to catch the class of errors which prompted PR #2085
    assert isinstance(arr, np.ndarray)


@given(nps.nested_dtypes())
def test_np_dtype_is_idempotent(dtype):
    assert dtype == np.dtype(dtype)


def test_minimise_scalar_dtypes():
    assert minimal(nps.scalar_dtypes()) == np.dtype("bool")


def test_minimise_nested_types():
    assert minimal(nps.nested_dtypes()) == np.dtype("bool")


def test_minimise_array_strategy():
    smallest = minimal(
        nps.arrays(
            nps.nested_dtypes(max_itemsize=200),
            nps.array_shapes(max_dims=3, max_side=3),
        )
    )
    assert smallest.dtype == np.dtype("bool")
    assert not smallest.any()


@given(nps.array_dtypes(allow_subarrays=False))
def test_can_turn_off_subarrays(dt):
    for name in dt.names:
        assert dt.fields[name][0].shape == ()


def test_array_dtypes_may_have_field_titles():
    find_any(nps.array_dtypes(), lambda dt: len(dt.fields) > len(dt.names))


@pytest.mark.parametrize("byteorder", ["<", ">"])
@given(data=st.data())
def test_can_restrict_endianness(data, byteorder):
    dtype = data.draw(nps.integer_dtypes(endianness=byteorder, sizes=(16, 32, 64)))
    if byteorder == ("<" if sys.byteorder == "little" else ">"):
        assert dtype.byteorder == "="
    else:
        assert dtype.byteorder == byteorder


@given(nps.integer_dtypes(sizes=8))
def test_can_specify_size_as_an_int(dt):
    assert dt.itemsize == 1


@given(st.data())
def test_can_draw_arrays_from_scalars(data):
    dt = data.draw(nps.scalar_dtypes())
    result = data.draw(nps.arrays(dtype=dt, shape=()))
    assert isinstance(result, np.ndarray)
    assert result.dtype == dt


@given(st.data())
def test_can_cast_for_arrays(data):
    # Note: this only passes with castable datatypes, certain dtype
    # combinations will result in an error if numpy is not able to cast them.
    dt_elements = np.dtype(data.draw(st.sampled_from(["bool", "<i2", ">i2"])))
    dt_desired = np.dtype(
        data.draw(st.sampled_from(["<i2", ">i2", "float32", "float64"]))
    )
    result = data.draw(
        nps.arrays(
            dtype=dt_desired, elements=nps.from_dtype(dt_elements), shape=(1, 2, 3)
        )
    )
    assert isinstance(result, np.ndarray)
    assert result.dtype == dt_desired


@given(nps.arrays(dtype="int8", shape=st.integers(0, 20), unique=True))
def test_array_values_are_unique(arr):
    assert len(set(arr)) == len(arr)


def test_cannot_generate_unique_array_of_too_many_elements():
    strat = nps.arrays(dtype=int, elements=st.integers(0, 5), shape=10, unique=True)
    with pytest.raises(InvalidArgument):
        check_can_generate_examples(strat)


@given(
    nps.arrays(
        elements=st.just(0.0),
        dtype=float,
        fill=st.just(np.nan),
        shape=st.integers(0, 20),
        unique=True,
    )
)
def test_array_values_are_unique_high_collision(arr):
    assert (arr == 0.0).sum() <= 1


@given(nps.arrays(dtype="int8", shape=(4,), elements=st.integers(0, 3), unique=True))
def test_generates_all_values_for_unique_array(arr):
    # Ensures that the "reject already-seen element" branch is covered
    assert len(set(arr)) == len(arr)


@given(nps.arrays(dtype="int8", shape=255, unique=True))
def test_efficiently_generates_all_unique_array(arr):
    # Avoids the birthday paradox with UniqueSampledListStrategy
    assert len(set(arr)) == len(arr)


@given(st.data(), st.integers(-100, 100), st.integers(1, 100))
def test_array_element_rewriting(data, start, size):
    arr = nps.arrays(
        dtype=np.dtype("int64"),
        shape=size,
        elements=st.integers(start, start + size - 1),
        unique=True,
    )
    assert set(data.draw(arr)) == set(range(start, start + size))


def test_may_fill_with_nan_when_unique_is_set():
    find_any(
        nps.arrays(
            dtype=float,
            elements=st.floats(allow_nan=False),
            shape=10,
            unique=True,
            fill=st.just(np.nan),
        ),
        lambda x: np.isnan(x).any(),
    )


@given(
    nps.arrays(
        dtype=float,
        elements=st.floats(allow_nan=False),
        shape=10,
        unique=True,
        fill=st.just(np.nan),
    )
)
def test_is_still_unique_with_nan_fill(xs):
    assert len(set(xs)) == len(xs)


@fails_with(InvalidArgument)
@given(
    nps.arrays(
        dtype=float,
        elements=st.floats(allow_nan=False),
        shape=10,
        unique=True,
        fill=st.just(0.0),
    )
)
def test_may_not_fill_with_non_nan_when_unique_is_set(arr):
    pass


@fails_with(InvalidArgument)
@given(nps.arrays(dtype="U", shape=10, unique=True, fill=st.just("")))
def test_may_not_fill_with_non_nan_when_unique_is_set_and_type_is_not_number(arr):
    pass


np_version = tuple(int(x) for x in np.__version__.split(".")[:2])


@pytest.mark.parametrize("fill", [False, True])
# Overflowing elements deprecated upstream in Numpy 1.24 :-)
@fails_with(
    InvalidArgument
    if np_version < (1, 24)
    else (DeprecationWarning if np_version < (2, 0) else OverflowError)
)
@given(st.data())
def test_overflowing_integers_are_deprecated(fill, data):
    kw = {"elements": st.just(300)}
    if fill:
        kw = {"elements": st.nothing(), "fill": kw["elements"]}
    arr = data.draw(nps.arrays(dtype="int8", shape=(1,), **kw))
    assert arr[0] == (300 % 256)


@pytest.mark.parametrize("fill", [False, True])
@pytest.mark.parametrize(
    "dtype,strat",
    [
        ("float16", st.floats(min_value=65520, allow_infinity=False)),
        ("float32", st.floats(min_value=10**40, allow_infinity=False)),
        (
            "complex64",
            st.complex_numbers(min_magnitude=10**300, allow_infinity=False),
        ),
        ("U1", st.text(min_size=2, max_size=2)),
        ("S1", st.binary(min_size=2, max_size=2)),
    ],
)
@fails_with(InvalidArgument)
@given(data=st.data())
def test_unrepresentable_elements_are_deprecated(fill, dtype, strat, data):
    if fill:
        kw = {"elements": st.nothing(), "fill": strat}
    else:
        kw = {"elements": strat}
    try:
        arr = data.draw(nps.arrays(dtype=dtype, shape=(1,), **kw))
    except RuntimeWarning:
        assert np_version >= (1, 24), "New overflow-on-cast detection"
        raise InvalidArgument("so the test passes") from None

    try:
        # This is a float or complex number, and has overflowed to infinity,
        # triggering our deprecation for overflow.
        assert np.isinf(arr[0])
    except TypeError:
        # We tried to call isinf on a string.  The string was generated at
        # length two, then truncated by the dtype of size 1 - deprecation
        # again.  If the first character was \0 it is now the empty string.
        assert len(arr[0]) <= 1


@given(nps.arrays(dtype="float16", shape=(1,)))
def test_inferred_floats_do_not_overflow(arr):
    pass


@given(nps.arrays(dtype="float16", shape=10, elements={"min_value": 0, "max_value": 1}))
def test_inferred_floats_can_be_constrained_at_low_width(arr):
    assert (arr >= 0).all()
    assert (arr <= 1).all()


@given(
    nps.arrays(
        dtype="float16",
        shape=10,
        elements={
            "min_value": 0,
            "max_value": 1,
            "exclude_min": True,
            "exclude_max": True,
        },
    )
)
def test_inferred_floats_can_be_constrained_at_low_width_excluding_endpoints(arr):
    assert (arr > 0).all()
    assert (arr < 1).all()


@given(
    nps.arrays(
        dtype="float16",
        shape=10,
        unique=True,
        elements=st.integers(1, 9),
        fill=st.just(np.nan),
    )
)
def test_unique_array_with_fill_can_use_all_elements(arr):
    assume(len(set(arr)) == arr.size)


@given(nps.arrays(dtype="uint8", shape=25, unique=True, fill=st.nothing()))
def test_unique_array_without_fill(arr):
    # This test covers the collision-related branches for fully dense unique arrays.
    # Choosing 25 of 256 possible elements means we're almost certain to see collisions
    # thanks to the 'birthday paradox', but finding unique elemennts is still easy.
    assume(len(set(arr)) == arr.size)


@given(ndim=st.integers(0, 5), data=st.data())
def test_mapped_positive_axes_are_unique(ndim, data):
    min_size = data.draw(st.integers(0, ndim), label="min_size")
    max_size = data.draw(st.integers(min_size, ndim), label="max_size")
    axes = data.draw(
        nps.valid_tuple_axes(ndim, min_size=min_size, max_size=max_size), label="axes"
    )
    assert len(set(axes)) == len({i if 0 < i else ndim + i for i in axes})


@given(ndim=st.integers(0, 5), data=st.data())
def test_length_bounds_are_satisfied(ndim, data):
    min_size = data.draw(st.integers(0, ndim), label="min_size")
    max_size = data.draw(st.integers(min_size, ndim), label="max_size")
    axes = data.draw(
        nps.valid_tuple_axes(ndim, min_size=min_size, max_size=max_size), label="axes"
    )
    assert min_size <= len(axes) <= max_size


@given(shape=nps.array_shapes(), data=st.data())
def test_axes_are_valid_inputs_to_sum(shape, data):
    x = np.zeros(shape, dtype="uint8")
    axes = data.draw(nps.valid_tuple_axes(ndim=len(shape)), label="axes")
    np.sum(x, axes)


@settings(
    deadline=None, max_examples=10, suppress_health_check=[HealthCheck.nested_given]
)
@given(ndim=st.integers(0, 3), data=st.data())
def test_minimize_tuple_axes(ndim, data):
    min_size = data.draw(st.integers(0, ndim), label="min_size")
    max_size = data.draw(st.integers(min_size, ndim), label="max_size")
    smallest = minimal(nps.valid_tuple_axes(ndim, min_size=min_size, max_size=max_size))
    assert len(smallest) == min_size
    assert all(k > -1 for k in smallest)


@settings(
    deadline=None, max_examples=10, suppress_health_check=[HealthCheck.nested_given]
)
@given(ndim=st.integers(0, 3), data=st.data())
def test_minimize_negative_tuple_axes(ndim, data):
    min_size = data.draw(st.integers(0, ndim), label="min_size")
    max_size = data.draw(st.integers(min_size, ndim), label="max_size")
    smallest = minimal(
        nps.valid_tuple_axes(ndim, min_size=min_size, max_size=max_size),
        lambda x: all(i < 0 for i in x),
    )
    assert len(smallest) == min_size


@given(nps.broadcastable_shapes((), min_side=0, max_side=0, min_dims=0, max_dims=0))
def test_broadcastable_empty_shape(shape):
    assert shape == ()


@settings(deadline=None, suppress_health_check=[HealthCheck.too_slow])
@given(shape=ANY_SHAPE, data=st.data())
def test_broadcastable_shape_bounds_are_satisfied(shape, data):
    min_dims = data.draw(st.integers(0, 32), label="min_dims")
    max_dims = data.draw(st.none() | st.integers(min_dims, 32), label="max_dims")
    min_side = data.draw(st.integers(0, 3), label="min_side")
    max_side = data.draw(st.none() | st.integers(min_side, 6), label="max_side")
    try:
        bshape = data.draw(
            nps.broadcastable_shapes(
                shape,
                min_side=min_side,
                max_side=max_side,
                min_dims=min_dims,
                max_dims=max_dims,
            ),
            label="bshape",
        )
    except InvalidArgument:
        raise UnsatisfiedAssumption from None

    if max_dims is None:
        max_dims = max(len(shape), min_dims) + 2

    if max_side is None:
        max_side = max((*shape[::-1][:max_dims], min_side)) + 2

    assert isinstance(bshape, tuple)
    assert all(isinstance(s, int) for s in bshape)
    assert min_dims <= len(bshape) <= max_dims
    assert all(min_side <= s <= max_side for s in bshape)


@settings(deadline=None)
@given(num_shapes=st.integers(1, 4), base_shape=ANY_SHAPE, data=st.data())
def test_mutually_broadcastable_shape_bounds_are_satisfied(
    num_shapes, base_shape, data
):
    min_dims = data.draw(st.integers(0, 32), label="min_dims")
    max_dims = data.draw(
        st.one_of(st.none(), st.integers(min_dims, 32)), label="max_dims"
    )
    min_side = data.draw(st.integers(0, 3), label="min_side")
    max_side = data.draw(
        st.one_of(st.none(), st.integers(min_side, 6)), label="max_side"
    )
    try:
        shapes, result = data.draw(
            nps.mutually_broadcastable_shapes(
                num_shapes=num_shapes,
                base_shape=base_shape,
                min_side=min_side,
                max_side=max_side,
                min_dims=min_dims,
                max_dims=max_dims,
            ),
            label="shapes, result",
        )
    except InvalidArgument:
        raise UnsatisfiedAssumption from None

    if max_dims is None:
        max_dims = max(len(base_shape), min_dims) + 2

    if max_side is None:
        max_side = max((*base_shape[::-1][:max_dims], min_side)) + 2

    assert isinstance(shapes, tuple)
    assert isinstance(result, tuple)
    assert all(isinstance(s, int) for s in result)

    for bshape in shapes:
        assert isinstance(bshape, tuple)
        assert all(isinstance(s, int) for s in bshape)
        assert min_dims <= len(bshape) <= max_dims
        assert all(min_side <= s <= max_side for s in bshape)


def _draw_valid_bounds(data, shape, max_dims, *, permit_none=True):
    if max_dims == 0 or not shape:
        return 0, None

    smallest_side = min(shape[::-1][:max_dims])
    min_strat = (
        st.sampled_from([1, smallest_side])
        if smallest_side > 1
        else st.just(smallest_side)
    )
    min_side = data.draw(min_strat, label="min_side")
    largest_side = max(max(shape[::-1][:max_dims]), min_side)
    if permit_none:
        max_strat = st.one_of(st.none(), st.integers(largest_side, largest_side + 2))
    else:
        max_strat = st.integers(largest_side, largest_side + 2)
    max_side = data.draw(max_strat, label="max_side")
    return min_side, max_side


def _broadcast_two_shapes(shape_a: nps.Shape, shape_b: nps.Shape) -> nps.Shape:
    result = []
    for a, b in zip_longest(reversed(shape_a), reversed(shape_b), fillvalue=1):
        if a != b and (a != 1) and (b != 1):
            raise ValueError(
                f"shapes {shape_a!r} and {shape_b!r} are not broadcast-compatible"
            )
        result.append(a if a != 1 else b)
    return tuple(reversed(result))


def _broadcast_shapes(*shapes):
    """Returns the shape resulting from broadcasting the
    input shapes together.

    Raises ValueError if the shapes are not broadcast-compatible"""
    assert shapes, "Must pass >=1 shapes to broadcast"
    return reduce(_broadcast_two_shapes, shapes, ())


@settings(deadline=None, max_examples=500)
@given(
    shapes=st.lists(
        nps.array_shapes(min_dims=0, min_side=0, max_dims=4, max_side=4), min_size=1
    )
)
def test_broadcastable_shape_util(shapes):
    """Ensures that `_broadcast_shapes` raises when fed incompatible shapes,
    and ensures that it produces the true broadcasted shape"""
    if len(shapes) == 1:
        assert _broadcast_shapes(*shapes) == shapes[0]
        return

    arrs = [np.zeros(s, dtype=np.uint8) for s in shapes]

    try:
        broadcast_out = np.broadcast_arrays(*arrs)
    except ValueError:
        with pytest.raises(ValueError):
            _broadcast_shapes(*shapes)
        return
    broadcasted_shape = _broadcast_shapes(*shapes)

    assert broadcast_out[0].shape == broadcasted_shape


@settings(deadline=None, max_examples=200)
@given(shape=ANY_NONZERO_SHAPE, data=st.data())
def test_broadcastable_shape_has_good_default_values(shape, data):
    # This test ensures that default parameters can always produce broadcast-compatible shapes
    broadcastable_shape = data.draw(
        nps.broadcastable_shapes(shape), label="broadcastable_shapes"
    )
    # error if drawn shape for b is not broadcast-compatible
    _broadcast_shapes(shape, broadcastable_shape)


@settings(deadline=None, max_examples=200)
@given(base_shape=ANY_SHAPE, num_shapes=st.integers(1, 10), data=st.data())
def test_mutually_broadcastableshapes_has_good_default_values(
    num_shapes, base_shape, data
):
    # This test ensures that default parameters can always produce broadcast-compatible shapes
    shapes, result = data.draw(
        nps.mutually_broadcastable_shapes(num_shapes=num_shapes, base_shape=base_shape),
        label="shapes, result",
    )
    assert len(shapes) == num_shapes
    # raises if shapes are not mutually-compatible
    assert result == _broadcast_shapes(base_shape, *shapes)


@settings(deadline=None)
@given(min_dims=st.integers(0, 32), shape=ANY_SHAPE, data=st.data())
def test_broadcastable_shape_can_broadcast(min_dims, shape, data):
    max_dims = data.draw(st.none() | st.integers(min_dims, 32), label="max_dims")
    min_side, max_side = _draw_valid_bounds(data, shape, max_dims)
    broadcastable_shape = data.draw(
        nps.broadcastable_shapes(
            shape,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        ),
        label="broadcastable_shapes",
    )
    # error if drawn shape for b is not broadcast-compatible
    _broadcast_shapes(shape, broadcastable_shape)


@settings(deadline=None)
@given(
    num_shapes=st.integers(1, 10),
    min_dims=st.integers(0, 32),
    base_shape=ANY_SHAPE,
    data=st.data(),
)
def test_mutually_broadcastable_shape_can_broadcast(
    num_shapes, min_dims, base_shape, data
):
    max_dims = data.draw(st.none() | st.integers(min_dims, 32), label="max_dims")
    min_side, max_side = _draw_valid_bounds(data, base_shape, max_dims)
    shapes, result = data.draw(
        nps.mutually_broadcastable_shapes(
            num_shapes=num_shapes,
            base_shape=base_shape,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        ),
        label="shapes, result",
    )

    # error if drawn shapes are not mutually broadcast-compatible
    assert result == _broadcast_shapes(base_shape, *shapes)


@settings(
    deadline=None, max_examples=50, suppress_health_check=[HealthCheck.nested_given]
)
@given(
    num_shapes=st.integers(1, 3),
    min_dims=st.integers(0, 5),
    base_shape=nps.array_shapes(min_dims=0, max_dims=3, min_side=0, max_side=5),
    data=st.data(),
)
def test_minimize_mutually_broadcastable_shape(num_shapes, min_dims, base_shape, data):
    # Ensure aligned dimensions of broadcastable shape minimizes to `(1,) * min_dims`
    max_dims = data.draw(st.none() | st.integers(min_dims, 5), label="max_dims")
    min_side, max_side = _draw_valid_bounds(
        data, base_shape, max_dims, permit_none=False
    )

    if num_shapes > 1:
        # shrinking gets a little bit hairy when we have empty axes
        # and multiple num_shapes
        assume(min_side > 0)

    smallest_shapes, result = minimal(
        nps.mutually_broadcastable_shapes(
            num_shapes=num_shapes,
            base_shape=base_shape,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        )
    )
    note(f"smallest_shapes: {smallest_shapes}")
    note(f"result: {result}")
    assert len(smallest_shapes) == num_shapes
    assert result == _broadcast_shapes(base_shape, *smallest_shapes)
    for smallest in smallest_shapes:
        n_leading = max(len(smallest) - len(base_shape), 0)
        n_aligned = max(len(smallest) - n_leading, 0)
        note(f"n_leading: {n_leading}")
        note(f"n_aligned: {n_aligned} {base_shape[-n_aligned:]}")
        expected = [min_side] * n_leading + [
            (min(1, i) if i != 1 else min_side) if min_side <= 1 <= max_side else i
            for i in (base_shape[-n_aligned:] if n_aligned else ())
        ]
        assert tuple(expected) == smallest


@settings(deadline=None)
@given(max_dims=st.integers(4, 6), data=st.data())
def test_broadcastable_shape_adjusts_max_dim_with_explicit_bounds(max_dims, data):
    # Ensures that `broadcastable_shapes` limits itself to satisfiable dimensions
    # Broadcastable values can only be drawn for dims 0-3 for these shapes
    shape = data.draw(st.sampled_from([(5, 3, 2, 1), (0, 3, 2, 1)]), label="shape")
    broadcastable_shape = data.draw(
        nps.broadcastable_shapes(
            shape, min_side=2, max_side=3, min_dims=3, max_dims=max_dims
        ),
        label="broadcastable_shapes",
    )
    assert len(broadcastable_shape) == 3
    # error if drawn shape for b is not broadcast-compatible
    _broadcast_shapes(shape, broadcastable_shape)


@settings(deadline=None)
@given(
    max_side=st.sampled_from([3, None]),
    min_dims=st.integers(0, 4),
    num_shapes=st.integers(1, 3),
    data=st.data(),
)
def test_mutually_broadcastable_shape_adjusts_max_dim_with_default_bounds(
    max_side, min_dims, num_shapes, data
):
    # Ensures that `mutually_broadcastable_shapes` limits itself to satisfiable dimensions
    # when a default `max_dims` is derived.
    base_shape = data.draw(
        st.sampled_from([(5, 3, 2, 1), (0, 3, 2, 1)]), label="base_shape"
    )

    try:
        shapes, result = data.draw(
            nps.mutually_broadcastable_shapes(
                num_shapes=num_shapes,
                base_shape=base_shape,
                min_side=2,
                max_side=max_side,
                min_dims=min_dims,
            ),
            label="shapes, result",
        )
    except InvalidArgument:
        # There is no satisfiable `max_dims` for us to tune
        assert min_dims == 4
        assert max_side == 3 or base_shape[0] == 0
        return

    if max_side == 3 or base_shape[0] == 0:
        assert all(len(s) <= 3 for s in shapes)
    elif min_dims == 4:
        assert all(4 <= len(s) for s in shapes)

    # error if drawn shape for b is not broadcast-compatible
    assert len(shapes) == num_shapes
    assert result == _broadcast_shapes(base_shape, *shapes)


@settings(
    deadline=None, max_examples=10, suppress_health_check=[HealthCheck.nested_given]
)
@given(min_dims=st.integers(0, 32), min_side=st.integers(2, 3), data=st.data())
def test_broadcastable_shape_shrinking_with_singleton_out_of_bounds(
    min_dims, min_side, data
):
    max_dims = data.draw(st.none() | st.integers(min_dims, 32), label="max_dims")
    max_side = data.draw(st.none() | st.integers(min_side, 6), label="max_side")
    shape = data.draw(st.integers(1, 4).map(lambda n: n * (1,)), label="shape")
    smallest = minimal(
        nps.broadcastable_shapes(
            shape,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        )
    )
    assert smallest == (min_side,) * min_dims


@settings(
    deadline=None, max_examples=50, suppress_health_check=[HealthCheck.nested_given]
)
@given(
    num_shapes=st.integers(1, 4),
    min_dims=st.integers(0, 4),
    min_side=st.integers(2, 3),
    data=st.data(),
)
def test_mutually_broadcastable_shapes_shrinking_with_singleton_out_of_bounds(
    num_shapes, min_dims, min_side, data
):
    """Ensures that shapes minimize to `(min_side,) * min_dims` when singleton dimensions
    are disallowed."""
    max_dims = data.draw(st.none() | st.integers(min_dims, 4), label="max_dims")
    max_side = data.draw(
        st.one_of(st.none(), st.integers(min_side, 6)), label="max_side"
    )
    ndims = data.draw(st.integers(1, 4), label="ndim")
    base_shape = (1,) * ndims
    smallest_shapes, result = minimal(
        nps.mutually_broadcastable_shapes(
            num_shapes=num_shapes,
            base_shape=base_shape,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        )
    )
    note(f"(smallest_shapes, result): {(smallest_shapes, result)}")
    assert len(smallest_shapes) == num_shapes
    assert result == _broadcast_shapes(base_shape, *smallest_shapes)
    for smallest in smallest_shapes:
        assert smallest == (min_side,) * min_dims


@settings(suppress_health_check=[HealthCheck.too_slow])
@given(
    num_shapes=st.integers(1, 4),
    min_dims=st.integers(1, 32),
    max_side=st.integers(1, 6),
    data=st.data(),
)
def test_mutually_broadcastable_shapes_only_singleton_is_valid(
    num_shapes, min_dims, max_side, data
):
    """Ensures that, when all aligned base-shape dim sizes are larger
    than ``max_side``, only singletons can be drawn"""
    max_dims = data.draw(st.integers(min_dims, 32), label="max_dims")
    base_shape = data.draw(
        nps.array_shapes(min_side=max_side + 1, min_dims=1), label="base_shape"
    )
    input_shapes, result = data.draw(
        nps.mutually_broadcastable_shapes(
            num_shapes=num_shapes,
            base_shape=base_shape,
            min_side=1,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        ),
        label="input_shapes, result",
    )

    assert len(input_shapes) == num_shapes
    assert result == _broadcast_shapes(base_shape, *input_shapes)
    for shape in input_shapes:
        assert all(i == 1 for i in shape[-len(base_shape) :])


@settings(deadline=None, suppress_health_check=[HealthCheck.too_slow])
@given(
    shape=nps.array_shapes(min_dims=0, max_dims=3, min_side=0, max_side=5),
    max_dims=st.integers(0, 6),
    data=st.data(),
)
def test_broadcastable_shape_can_generate_arbitrary_ndims(shape, max_dims, data):
    # ensures that generates shapes can possess any length in [min_dims, max_dims]
    desired_ndim = data.draw(st.integers(0, max_dims), label="desired_ndim")
    min_dims = data.draw(
        st.one_of(st.none(), st.integers(0, desired_ndim)), label="min_dims"
    )
    # check default arg behavior too
    kwargs = {"min_dims": min_dims} if min_dims is not None else {}
    find_any(
        nps.broadcastable_shapes(shape, min_side=0, max_dims=max_dims, **kwargs),
        lambda x: len(x) == desired_ndim,
        settings(max_examples=10**6),
    )


@settings(deadline=None)
@given(
    num_shapes=st.integers(1, 3),
    base_shape=nps.array_shapes(min_dims=0, max_dims=3, min_side=0, max_side=5),
    max_dims=st.integers(0, 4),
    data=st.data(),
)
def test_mutually_broadcastable_shapes_can_generate_arbitrary_ndims(
    num_shapes, base_shape, max_dims, data
):
    # ensures that each generated shape can possess any length in [min_dims, max_dims]
    desired_ndims = data.draw(
        st.lists(st.integers(0, max_dims), min_size=num_shapes, max_size=num_shapes),
        label="desired_ndims",
    )
    min_dims = data.draw(
        st.one_of(st.none(), st.integers(0, min(desired_ndims))), label="min_dims"
    )
    # check default arg behavior too
    kwargs = {"min_dims": min_dims} if min_dims is not None else {}
    find_any(
        nps.mutually_broadcastable_shapes(
            num_shapes=num_shapes,
            base_shape=base_shape,
            min_side=0,
            max_dims=max_dims,
            **kwargs,
        ),
        lambda x: {len(s) for s in x.input_shapes} == set(desired_ndims),
        settings(max_examples=10**6),
    )


@settings(deadline=None, suppress_health_check=list(HealthCheck))
@given(
    base_shape=nps.array_shapes(min_dims=0, max_dims=3, min_side=0, max_side=2),
    max_dims=st.integers(1, 4),
)
def test_mutually_broadcastable_shapes_can_generate_interesting_singletons(
    base_shape, max_dims
):
    find_any(
        nps.mutually_broadcastable_shapes(
            num_shapes=2,
            base_shape=base_shape,
            min_side=0,
            max_dims=max_dims,
        ),
        lambda x: any(a != b for a, b in zip(*(s[::-1] for s in x.input_shapes))),  # type: ignore
    )


@pytest.mark.parametrize("base_shape", [(), (0,), (1,), (2,), (1, 2), (2, 1), (2, 2)])
def test_mutually_broadcastable_shapes_can_generate_mirrored_singletons(base_shape):
    def f(shapes: nps.BroadcastableShapes):
        x, y = shapes.input_shapes
        return x.count(1) == 1 and y.count(1) == 1 and x[::-1] == y

    find_any(
        nps.mutually_broadcastable_shapes(
            num_shapes=2,
            base_shape=base_shape,
            min_side=0,
            max_side=3,
            min_dims=2,
            max_dims=2,
        ),
        f,
    )


@settings(deadline=None)
@given(
    shape=nps.array_shapes(min_dims=1, min_side=1),
    dtype=st.one_of(nps.unsigned_integer_dtypes(), nps.integer_dtypes()),
    data=st.data(),
)
def test_advanced_integer_index_is_valid_with_default_result_shape(shape, dtype, data):
    index = data.draw(nps.integer_array_indices(shape, dtype=dtype))
    x = np.zeros(shape)
    out = x[index]  # raises if the index is invalid
    assert not np.shares_memory(x, out)  # advanced indexing should not return a view
    assert all(dtype == x.dtype for x in index)


@settings(deadline=None)
@given(
    shape=nps.array_shapes(min_dims=1, min_side=1),
    min_dims=st.integers(0, 3),
    min_side=st.integers(0, 3),
    dtype=st.one_of(nps.unsigned_integer_dtypes(), nps.integer_dtypes()),
    data=st.data(),
)
def test_advanced_integer_index_is_valid_and_satisfies_bounds(
    shape, min_dims, min_side, dtype, data
):
    max_side = data.draw(st.integers(min_side, min_side + 2), label="max_side")
    max_dims = data.draw(st.integers(min_dims, min_dims + 2), label="max_dims")
    index = data.draw(
        nps.integer_array_indices(
            shape,
            result_shape=nps.array_shapes(
                min_dims=min_dims,
                max_dims=max_dims,
                min_side=min_side,
                max_side=max_side,
            ),
            dtype=dtype,
        )
    )
    x = np.zeros(shape)
    out = x[index]  # raises if the index is invalid
    assert all(min_side <= s <= max_side for s in out.shape)
    assert min_dims <= out.ndim <= max_dims
    assert not np.shares_memory(x, out)  # advanced indexing should not return a view
    assert all(dtype == x.dtype for x in index)


@settings(deadline=None, suppress_health_check=[HealthCheck.nested_given])
@given(
    shape=nps.array_shapes(min_dims=1, min_side=1),
    min_dims=st.integers(0, 3),
    min_side=st.integers(0, 3),
    dtype=st.sampled_from(["uint8", "int8"]),
    data=st.data(),
)
def test_advanced_integer_index_minimizes_as_documented(
    shape, min_dims, min_side, dtype, data
):
    max_side = data.draw(st.integers(min_side, min_side + 2), label="max_side")
    max_dims = data.draw(st.integers(min_dims, min_dims + 2), label="max_dims")
    result_shape = nps.array_shapes(
        min_dims=min_dims, max_dims=max_dims, min_side=min_side, max_side=max_side
    )
    smallest = minimal(
        nps.integer_array_indices(shape, result_shape=result_shape, dtype=dtype)
    )
    desired = len(shape) * (np.zeros(min_dims * [min_side]),)
    assert len(smallest) == len(desired)
    for s, d in zip(smallest, desired):
        np.testing.assert_array_equal(s, d)


@settings(
    deadline=None, max_examples=25, suppress_health_check=[HealthCheck.nested_given]
)
@given(
    shape=nps.array_shapes(min_dims=1, max_dims=2, min_side=1, max_side=3),
    data=st.data(),
)
def test_advanced_integer_index_can_generate_any_pattern(shape, data):
    # ensures that generated index-arrays can be used to yield any pattern of elements from an array
    x = np.arange(np.prod(shape)).reshape(shape)

    target_array = data.draw(
        nps.arrays(
            shape=nps.array_shapes(min_dims=1, max_dims=2, min_side=1, max_side=2),
            elements=st.sampled_from(x.flatten()),
            dtype=x.dtype,
        ),
        label="target",
    )

    def index_selects_values_in_order(index):
        selected = x[index]
        target(len(set(selected.flatten())), label="unique indices")
        target(float(np.sum(target_array == selected)), label="elements correct")
        return np.all(target_array == selected)

    minimal(
        nps.integer_array_indices(shape, result_shape=st.just(target_array.shape)),
        index_selects_values_in_order,
        settings(max_examples=10**6, phases=[Phase.generate, Phase.target]),
    )


@pytest.mark.parametrize(
    "condition",
    [
        lambda ix: isinstance(ix, tuple) and Ellipsis in ix,
        lambda ix: isinstance(ix, tuple) and Ellipsis not in ix,
        lambda ix: isinstance(ix, tuple) and np.newaxis in ix,
        lambda ix: isinstance(ix, tuple) and np.newaxis not in ix,
        lambda ix: ix is Ellipsis,
        lambda ix: ix == np.newaxis,
    ],
)
def test_basic_indices_options(condition):
    indexers = nps.array_shapes(min_dims=0, max_dims=32).flatmap(
        lambda shape: nps.basic_indices(shape, allow_newaxis=True)
    )
    find_any(indexers, condition)


def test_basic_indices_can_generate_empty_tuple():
    find_any(nps.basic_indices(shape=(0, 0), allow_ellipsis=True), lambda ix: ix == ())


def test_basic_indices_can_generate_non_tuples():
    find_any(
        nps.basic_indices(shape=(0, 0), allow_ellipsis=True),
        lambda ix: not isinstance(ix, tuple),
    )


def test_basic_indices_can_generate_long_ellipsis():
    # Runs of slice(None) - such as [0,:,:,:,0] - can be replaced by e.g. [0,...,0]
    find_any(
        nps.basic_indices(shape=(1, 0, 0, 0, 1), allow_ellipsis=True),
        lambda ix: len(ix) == 3 and ix[1] == Ellipsis,
    )


@given(
    nps.basic_indices(shape=(0, 0, 0, 0, 0)).filter(
        lambda idx: isinstance(idx, tuple) and Ellipsis in idx
    )
)
def test_basic_indices_replaces_whole_axis_slices_with_ellipsis(idx):
    # `slice(None)` (aka `:`) is the only valid index for an axis of size
    # zero, so if all dimensions are 0 then a `...` will replace all the
    # slices because we generate `...` for entire contiguous runs of `:`
    assert slice(None) not in idx


def test_basic_indices_can_generate_indices_not_covering_all_dims():
    # These "flat indices" are skippable in the underlying BasicIndexStrategy,
    # so we ensure we're definitely generating them for nps.basic_indices().
    find_any(
        nps.basic_indices(shape=(3, 3, 3)),
        lambda ix: (
            (not isinstance(ix, tuple) and ix != Ellipsis)
            or (isinstance(ix, tuple) and Ellipsis not in ix and len(ix) < 3)
        ),
        settings=settings(max_examples=5_000),
    )


@given(
    shape=nps.array_shapes(min_dims=0, max_side=4)
    | nps.array_shapes(min_dims=0, min_side=0, max_side=10),
    allow_newaxis=st.booleans(),
    allow_ellipsis=st.booleans(),
    data=st.data(),
)
def test_basic_indices_generate_valid_indexers(
    shape, allow_newaxis, allow_ellipsis, data
):
    min_dims = data.draw(
        st.integers(0, 5 if allow_newaxis else len(shape)), label="min_dims"
    )
    max_dims = data.draw(
        st.none() | st.integers(min_dims, 32 if allow_newaxis else len(shape)),
        label="max_dims",
    )
    indexer = data.draw(
        nps.basic_indices(
            shape,
            min_dims=min_dims,
            max_dims=max_dims,
            allow_ellipsis=allow_ellipsis,
            allow_newaxis=allow_newaxis,
        ),
        label="indexer",
    )

    # Check that disallowed things are indeed absent
    if not allow_newaxis:
        if isinstance(indexer, tuple):
            assert 0 <= len(indexer) <= len(shape) + int(allow_ellipsis)
        else:
            assert 1 <= len(shape) + int(allow_ellipsis)
        assert np.newaxis not in shape
    if not allow_ellipsis:
        assert Ellipsis not in shape

    if 0 in shape:
        # If there's a zero in the shape, the array will have no elements.
        array = np.zeros(shape)
        assert array.size == 0
    elif np.prod(shape) <= 10**5:
        # If it's small enough to instantiate, do so with distinct elements.
        array = np.arange(np.prod(shape)).reshape(shape)
    else:
        # We can't cheat on this one, so just try another.
        assume(False)
    view = array[indexer]
    if not np.isscalar(view):
        assert min_dims <= view.ndim <= (32 if max_dims is None else max_dims)
        if view.size:
            assert np.shares_memory(view, array)


# addresses https://github.com/HypothesisWorks/hypothesis/issues/2582
@given(
    nps.arrays(
        shape=nps.array_shapes(min_dims=0, min_side=0), dtype=nps.floating_dtypes()
    )
)
def test_array_owns_memory(x: np.ndarray):
    assert x.base is None
    assert x[...].base is x


@given(st.data())
def test_no_recursion_in_multi_line_reprs_issue_3560(data):
    data.draw(nps.arrays(shape=(2,), dtype=float).map(lambda x: x))
    data.draw(
        nps.arrays(
            shape=(2,),
            dtype=float,
        ).map(lambda x: x)
    )


def test_infers_elements_and_fill():
    # Regression test for https://github.com/HypothesisWorks/hypothesis/issues/3900
    # We only infer a fill strategy if the elements_strategy has reusable values,
    # and the interaction of two performance fixes broke this.  Oops...
    s = unwrap_strategies(nps.arrays(dtype=np.uint32, shape=1))
    assert isinstance(s, nps.ArrayStrategy)
    assert repr(s.element_strategy) == f"integers(0, {2**32-1})"
    assert repr(s.fill) == f"integers(0, {2**32-1})"

    # But we _don't_ infer a fill if the elements strategy is non-reusable
    elems = st.builds(lambda x: x * 2, st.integers(1, 10)).map(np.uint32)
    assert not elems.has_reusable_values
    s = unwrap_strategies(nps.arrays(dtype=np.uint32, shape=1, elements=elems))
    assert s.fill.is_empty