File: test_gufunc.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (180 lines) | stat: -rw-r--r-- 5,908 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np
import pytest
from pytest import param

from hypothesis import HealthCheck, example, given, note, settings, strategies as st
from hypothesis.extra import numpy as nps
from hypothesis.extra._array_helpers import _hypothesis_parse_gufunc_signature

from tests.common.debug import find_any, minimal


def use_signature_examples(func):
    for sig in [
        "(),()->()",
        "(i)->()",
        "(i),(i)->()",
        "(m,n),(n,p)->(m,p)",
        "(n),(n,p)->(p)",
        "(m,n),(n)->(m)",
        "(m?,n),(n,p?)->(m?,p?)",
        "(3),(3)->(3)",
    ]:
        func = example(sig)(func)
    return func


def hy_sig_2_np_sig(hy_sig):
    return (
        [tuple(d.strip("?") for d in shape) for shape in hy_sig.input_shapes],
        [tuple(d.strip("?") for d in hy_sig.result_shape)],
    )


def test_frozen_dims_signature():
    _hypothesis_parse_gufunc_signature("(2),(3)->(4)")


@st.composite
def gufunc_arrays(draw, shape_strat, **kwargs):
    """An example user strategy built on top of mutually_broadcastable_shapes."""
    input_shapes, result_shape = draw(shape_strat)
    arrays_strat = st.tuples(*(nps.arrays(shape=s, **kwargs) for s in input_shapes))
    return draw(arrays_strat), result_shape


@given(
    gufunc_arrays(
        nps.mutually_broadcastable_shapes(signature=np.matmul.signature),
        dtype="float64",
        elements=st.floats(0, 1000),
    )
)
def test_matmul_gufunc_shapes(everything):
    arrays, result_shape = everything
    out = np.matmul(*arrays)
    assert out.shape == result_shape


@settings(deadline=None, max_examples=10, suppress_health_check=list(HealthCheck))
@pytest.mark.parametrize(
    "target_sig",
    ("(i),(i)->()", "(m,n),(n,p)->(m,p)", "(n),(n,p)->(p)", "(m,n),(n)->(m)"),
)
@given(data=st.data())
def test_matmul_signature_can_exercise_all_combination_of_optional_dims(
    target_sig, data
):
    target_shapes = data.draw(
        nps.mutually_broadcastable_shapes(signature=target_sig, max_dims=0)
    )
    find_any(
        nps.mutually_broadcastable_shapes(
            signature="(m?,n),(n,p?)->(m?,p?)", max_dims=0
        ),
        lambda shapes: shapes == target_shapes,
    )


@settings(
    deadline=None, max_examples=50, suppress_health_check=[HealthCheck.nested_given]
)
@given(
    min_dims=st.integers(0, 4),
    min_side=st.integers(2, 3),
    n_fixed=st.booleans(),
    data=st.data(),
)
def test_matmul_sig_shrinks_as_documented(min_dims, min_side, n_fixed, data):
    sig = "(m?,n),(n,p?)->(m?,p?)"
    if n_fixed:
        n_value = data.draw(st.integers(0, 4))
        sig = sig.replace("n", str(n_value))
    else:
        n_value = min_side

    note(f"signature: {sig}")
    max_dims = data.draw(st.none() | st.integers(min_dims, 4), label="max_dims")
    max_side = data.draw(st.none() | st.integers(min_side, 6), label="max_side")

    smallest_shapes, result = minimal(
        nps.mutually_broadcastable_shapes(
            signature=sig,
            min_side=min_side,
            max_side=max_side,
            min_dims=min_dims,
            max_dims=max_dims,
        )
    )
    note(f"(smallest_shapes, result): {(smallest_shapes, result)}")

    # if min_dims >= 1 then core dims are never excluded
    # otherwise, should shrink towards excluding all optional dims
    expected_input_0 = (
        (n_value,) if min_dims == 0 else (min_side,) * min_dims + (min_side, n_value)
    )
    assert expected_input_0 == smallest_shapes[0]

    expected_input_1 = (
        (n_value,) if min_dims == 0 else (min_side,) * min_dims + (n_value, min_side)
    )
    assert expected_input_1 == smallest_shapes[1]


def gufunc_sig_to_einsum_sig(gufunc_sig):
    """E.g. (i,j),(j,k)->(i,k) becomes ...ij,...jk->...ik"""

    def einlabels(labels):
        assert "x" not in labels, "we reserve x for fixed-dimensions"
        return "..." + "".join(i if not i.isdigit() else "x" for i in labels)

    gufunc_sig = _hypothesis_parse_gufunc_signature(gufunc_sig)
    input_sig = ",".join(map(einlabels, gufunc_sig.input_shapes))
    return input_sig + "->" + einlabels(gufunc_sig.result_shape)


@pytest.mark.parametrize(
    "gufunc_sig",
    [
        param("()->()", id="unary sum"),
        param("(),()->()", id="binary sum"),
        param("(),(),()->()", id="trinary sum"),
        param("(i)->()", id="sum1d"),
        param("(i,j)->(j)", id="sum rows"),
        param("(i),(i)->()", id="inner1d"),
        param("(i),(i),(i)->()", id="trinary inner1d"),
        param("(m,n),(n,p)->(m,p)", id="matmat"),
        param("(n),(n,p)->(p)", id="vecmat"),
        param("(i,t),(j,t)->(i,j)", id="outer-inner"),
        param("(3),(3)->(3)", id="cross1d"),
        param("(i,j)->(j,i)", id="transpose"),
        param("(i),(j)->(i,j)", id="outer"),
        param("(i,3),(3,k)->(3,i,k)", id="fixed dim outer product"),
        param("(i),(j),(k)->(i,j,k)", id="trinary outer"),
        param("(i,i)->(i)", id="trace"),
        param("(j,i,i,j)->(i,j)", id="bigger trace"),
        param("(k),(j,i,k,i,j),(j,i)->(i,j)", id="trace product"),
    ],
)
@given(data=st.data())
def test_einsum_gufunc_shapes(gufunc_sig, data):
    arrays, result_shape = data.draw(
        gufunc_arrays(
            nps.mutually_broadcastable_shapes(signature=gufunc_sig),
            dtype="float64",
            elements=st.floats(0, 1000),
        ),
        label="arrays, result_shape",
    )
    out = np.einsum(gufunc_sig_to_einsum_sig(gufunc_sig), *arrays)
    assert out.shape == result_shape