1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import numpy as np
import pytest
from pytest import param
from hypothesis import HealthCheck, example, given, note, settings, strategies as st
from hypothesis.extra import numpy as nps
from hypothesis.extra._array_helpers import _hypothesis_parse_gufunc_signature
from tests.common.debug import find_any, minimal
def use_signature_examples(func):
for sig in [
"(),()->()",
"(i)->()",
"(i),(i)->()",
"(m,n),(n,p)->(m,p)",
"(n),(n,p)->(p)",
"(m,n),(n)->(m)",
"(m?,n),(n,p?)->(m?,p?)",
"(3),(3)->(3)",
]:
func = example(sig)(func)
return func
def hy_sig_2_np_sig(hy_sig):
return (
[tuple(d.strip("?") for d in shape) for shape in hy_sig.input_shapes],
[tuple(d.strip("?") for d in hy_sig.result_shape)],
)
def test_frozen_dims_signature():
_hypothesis_parse_gufunc_signature("(2),(3)->(4)")
@st.composite
def gufunc_arrays(draw, shape_strat, **kwargs):
"""An example user strategy built on top of mutually_broadcastable_shapes."""
input_shapes, result_shape = draw(shape_strat)
arrays_strat = st.tuples(*(nps.arrays(shape=s, **kwargs) for s in input_shapes))
return draw(arrays_strat), result_shape
@given(
gufunc_arrays(
nps.mutually_broadcastable_shapes(signature=np.matmul.signature),
dtype="float64",
elements=st.floats(0, 1000),
)
)
def test_matmul_gufunc_shapes(everything):
arrays, result_shape = everything
out = np.matmul(*arrays)
assert out.shape == result_shape
@settings(deadline=None, max_examples=10, suppress_health_check=list(HealthCheck))
@pytest.mark.parametrize(
"target_sig",
("(i),(i)->()", "(m,n),(n,p)->(m,p)", "(n),(n,p)->(p)", "(m,n),(n)->(m)"),
)
@given(data=st.data())
def test_matmul_signature_can_exercise_all_combination_of_optional_dims(
target_sig, data
):
target_shapes = data.draw(
nps.mutually_broadcastable_shapes(signature=target_sig, max_dims=0)
)
find_any(
nps.mutually_broadcastable_shapes(
signature="(m?,n),(n,p?)->(m?,p?)", max_dims=0
),
lambda shapes: shapes == target_shapes,
)
@settings(
deadline=None, max_examples=50, suppress_health_check=[HealthCheck.nested_given]
)
@given(
min_dims=st.integers(0, 4),
min_side=st.integers(2, 3),
n_fixed=st.booleans(),
data=st.data(),
)
def test_matmul_sig_shrinks_as_documented(min_dims, min_side, n_fixed, data):
sig = "(m?,n),(n,p?)->(m?,p?)"
if n_fixed:
n_value = data.draw(st.integers(0, 4))
sig = sig.replace("n", str(n_value))
else:
n_value = min_side
note(f"signature: {sig}")
max_dims = data.draw(st.none() | st.integers(min_dims, 4), label="max_dims")
max_side = data.draw(st.none() | st.integers(min_side, 6), label="max_side")
smallest_shapes, result = minimal(
nps.mutually_broadcastable_shapes(
signature=sig,
min_side=min_side,
max_side=max_side,
min_dims=min_dims,
max_dims=max_dims,
)
)
note(f"(smallest_shapes, result): {(smallest_shapes, result)}")
# if min_dims >= 1 then core dims are never excluded
# otherwise, should shrink towards excluding all optional dims
expected_input_0 = (
(n_value,) if min_dims == 0 else (min_side,) * min_dims + (min_side, n_value)
)
assert expected_input_0 == smallest_shapes[0]
expected_input_1 = (
(n_value,) if min_dims == 0 else (min_side,) * min_dims + (n_value, min_side)
)
assert expected_input_1 == smallest_shapes[1]
def gufunc_sig_to_einsum_sig(gufunc_sig):
"""E.g. (i,j),(j,k)->(i,k) becomes ...ij,...jk->...ik"""
def einlabels(labels):
assert "x" not in labels, "we reserve x for fixed-dimensions"
return "..." + "".join(i if not i.isdigit() else "x" for i in labels)
gufunc_sig = _hypothesis_parse_gufunc_signature(gufunc_sig)
input_sig = ",".join(map(einlabels, gufunc_sig.input_shapes))
return input_sig + "->" + einlabels(gufunc_sig.result_shape)
@pytest.mark.parametrize(
"gufunc_sig",
[
param("()->()", id="unary sum"),
param("(),()->()", id="binary sum"),
param("(),(),()->()", id="trinary sum"),
param("(i)->()", id="sum1d"),
param("(i,j)->(j)", id="sum rows"),
param("(i),(i)->()", id="inner1d"),
param("(i),(i),(i)->()", id="trinary inner1d"),
param("(m,n),(n,p)->(m,p)", id="matmat"),
param("(n),(n,p)->(p)", id="vecmat"),
param("(i,t),(j,t)->(i,j)", id="outer-inner"),
param("(3),(3)->(3)", id="cross1d"),
param("(i,j)->(j,i)", id="transpose"),
param("(i),(j)->(i,j)", id="outer"),
param("(i,3),(3,k)->(3,i,k)", id="fixed dim outer product"),
param("(i),(j),(k)->(i,j,k)", id="trinary outer"),
param("(i,i)->(i)", id="trace"),
param("(j,i,i,j)->(i,j)", id="bigger trace"),
param("(k),(j,i,k,i,j),(j,i)->(i,j)", id="trace product"),
],
)
@given(data=st.data())
def test_einsum_gufunc_shapes(gufunc_sig, data):
arrays, result_shape = data.draw(
gufunc_arrays(
nps.mutually_broadcastable_shapes(signature=gufunc_sig),
dtype="float64",
elements=st.floats(0, 1000),
),
label="arrays, result_shape",
)
out = np.einsum(gufunc_sig_to_einsum_sig(gufunc_sig), *arrays)
assert out.shape == result_shape
|