1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
from random import Random
import pytest
from hypothesis import HealthCheck, settings
from hypothesis.internal.conjecture.engine import ConjectureData, ConjectureRunner
from hypothesis.strategies._internal import SearchStrategy
from tests.conjecture.common import interesting_origin
POISON = "POISON"
MAX_INT = 2**32 - 1
class PoisonedTree(SearchStrategy):
"""Generates variable sized tuples with an implicit tree structure.
The actual result is flattened out, but the hierarchy is implicit in
the data.
"""
def __init__(self, p):
super().__init__()
self.__p = p
def do_draw(self, data):
if data.draw_boolean(self.__p):
return data.draw(self) + data.draw(self)
else:
# We draw n as two separate calls so that it doesn't show up as a
# single choice. If it did, the heuristics that allow us to move
# choices around would fire and it would move right, which would
# then allow us to shrink it more easily.
n1 = data.draw_integer(0, 2**16 - 1) << 16
n2 = data.draw_integer(0, 2**16 - 1)
n = n1 | n2
if n == MAX_INT:
return (POISON,)
else:
return (None,)
TEST_SETTINGS = settings(
database=None,
suppress_health_check=list(HealthCheck),
max_examples=10**6,
deadline=None,
)
@pytest.mark.parametrize("size", [2, 5, 10])
@pytest.mark.parametrize("seed", [0, 15993493061449915028])
def test_can_reduce_poison_from_any_subtree(size, seed):
"""This test validates that we can minimize to any leaf node of a binary
tree, regardless of where in the tree the leaf is."""
random = Random(seed)
# Initially we create the minimal tree of size n, regardless of whether it
# is poisoned (which it won't be - the poison event essentially never
# happens when drawing uniformly at random).
# Choose p so that the expected size of the tree is equal to the desired
# size.
p = 1.0 / (2.0 - 1.0 / size)
strat = PoisonedTree(p)
def test_function(data):
v = data.draw(strat)
if len(v) >= size:
data.mark_interesting(interesting_origin())
runner = ConjectureRunner(test_function, random=random, settings=TEST_SETTINGS)
runner.generate_new_examples()
runner.shrink_interesting_examples()
(data,) = runner.interesting_examples.values()
assert len(ConjectureData.for_choices(data.choices).draw(strat)) == size
# find the nodes corresponding to n1 and n2
nodes = [
node
for node in data.nodes
if node.type == "integer" and node.constraints["max_value"] == 2**16 - 1
]
assert len(nodes) % 2 == 0
marker = bytes([1, 2, 3, 4])
for i in range(0, len(nodes), 2):
# Now for each leaf position in the tree we try inserting a poison
# value artificially. Additionally, we add a marker to the end that
# must be preserved. The marker means that we are not allow to rely on
# discarding the end of the choice sequence to get the desired shrink.
node = nodes[i]
def test_function_with_poison(data):
v = data.draw(strat)
m = data.draw_bytes(len(marker), len(marker))
if POISON in v and m == marker:
data.mark_interesting(interesting_origin())
runner = ConjectureRunner(
test_function_with_poison, random=random, settings=TEST_SETTINGS
)
# replace n1 and n2 with 2**16 - 1 to insert a poison value here
runner.cached_test_function(
data.choices[: node.index]
+ (2**16 - 1, 2**16 - 1)
+ (data.choices[node.index + 2 :])
+ (marker,)
)
assert runner.interesting_examples
runner.shrink_interesting_examples()
(shrunk,) = runner.interesting_examples.values()
assert ConjectureData.for_choices(shrunk.choices).draw(strat) == (POISON,)
|