1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import math
from random import Random
import pytest
from hypothesis import HealthCheck, assume, example, given, settings
from hypothesis.internal.conjecture.choice import ChoiceNode
from hypothesis.internal.conjecture.data import Status
from hypothesis.internal.conjecture.datatree import compute_max_children
from hypothesis.internal.conjecture.engine import ConjectureRunner, RunIsComplete
from hypothesis.internal.intervalsets import IntervalSet
from tests.conjecture.common import (
buffer_size_limit,
integer_constr,
nodes,
)
runner_settings = settings(
max_examples=100, database=None, suppress_health_check=list(HealthCheck)
)
def test_optimises_to_maximum():
def test(data):
data.target_observations["m"] = data.draw_integer(0, 2**8 - 1)
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
runner.cached_test_function((0,))
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["m"] == 255
def test_optimises_multiple_targets():
def test(data):
n = data.draw_integer(0, 2**8 - 1)
m = data.draw_integer(0, 2**8 - 1)
if n + m > 256:
data.mark_invalid()
data.target_observations["m"] = m
data.target_observations["n"] = n
data.target_observations["m + n"] = m + n
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
runner.cached_test_function((200, 0))
runner.cached_test_function((0, 200))
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["m"] == 255
assert runner.best_observed_targets["n"] == 255
assert runner.best_observed_targets["m + n"] == 256
def test_optimises_when_last_element_is_empty():
def test(data):
data.target_observations["n"] = data.draw_integer(0, 2**8 - 1)
data.start_span(label=1)
data.stop_span()
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
runner.cached_test_function((250,))
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["n"] == 255
def test_can_optimise_last_with_following_empty():
def test(data):
for _ in range(100):
data.draw_integer(0, 3)
data.target_observations[""] = data.draw_integer(0, 2**8 - 1)
data.start_span(1)
data.stop_span()
runner = ConjectureRunner(
test, settings=settings(runner_settings, max_examples=100), random=Random(0)
)
runner.cached_test_function((0,) * 101)
with pytest.raises(RunIsComplete):
runner.optimise_targets()
assert runner.best_observed_targets[""] == 255
@pytest.mark.parametrize("lower, upper", [(0, 1000), (13, 100), (1000, 2**16 - 1)])
@pytest.mark.parametrize("score_up", [False, True])
def test_can_find_endpoints_of_a_range(lower, upper, score_up):
def test(data):
n = data.draw_integer(0, 2**16 - 1)
if n < lower or n > upper:
data.mark_invalid()
if not score_up:
n = -n
data.target_observations["n"] = n
runner = ConjectureRunner(
test, settings=settings(runner_settings, max_examples=1000), random=Random(0)
)
runner.cached_test_function(((lower + upper) // 2,))
try:
runner.optimise_targets()
except RunIsComplete:
pass
if score_up:
assert runner.best_observed_targets["n"] == upper
else:
assert runner.best_observed_targets["n"] == -lower
def test_targeting_can_drive_length_very_high():
def test(data):
count = 0
while data.draw_boolean(0.25):
count += 1
data.target_observations[""] = min(count, 100)
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
# extend here to ensure we get a valid (non-overrun) test case. The
# outcome of the test case doesn't really matter as long as we have
# something for the runner to optimize.
runner.cached_test_function([], extend=50)
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets[""] == 100
def test_optimiser_when_test_grows_buffer_to_invalid():
def test(data):
m = data.draw_integer(0, 2**8 - 1)
data.target_observations["m"] = m
if m > 100:
data.draw_integer(0, 2**16 - 1)
data.mark_invalid()
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
runner.cached_test_function((0,) * 10)
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["m"] == 100
def test_can_patch_up_examples():
def test(data):
data.start_span(42)
m = data.draw_integer(0, 2**6 - 1)
data.target_observations["m"] = m
for _ in range(m):
data.draw_boolean()
data.stop_span()
for i in range(4):
if i != data.draw_integer(0, 2**8 - 1):
data.mark_invalid()
runner = ConjectureRunner(
test, settings=settings(runner_settings, max_examples=1000), random=Random(0)
)
d = runner.cached_test_function((0, 0, 1, 2, 3, 4))
assert d.status == Status.VALID
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["m"] == 63
def test_optimiser_when_test_grows_buffer_to_overflow():
def test(data):
m = data.draw_integer(0, 2**8 - 1)
data.target_observations["m"] = m
if m > 100:
data.draw_integer(0, 2**64 - 1)
data.mark_invalid()
runner = ConjectureRunner(test, settings=runner_settings, random=Random(0))
with buffer_size_limit(2):
runner.cached_test_function((0,) * 10)
try:
runner.optimise_targets()
except RunIsComplete:
pass
assert runner.best_observed_targets["m"] == 100
@given(nodes())
@example(
ChoiceNode(
type="bytes",
value=b"\xb1",
constraints={"min_size": 1, "max_size": 1},
was_forced=False,
)
)
@example(
ChoiceNode(
type="string",
value="aaaa",
constraints={
"min_size": 0,
"max_size": 10,
"intervals": IntervalSet.from_string("abcd"),
},
was_forced=False,
)
)
@example(
ChoiceNode(
type="integer", value=1, constraints=integer_constr(0, 200), was_forced=False
)
)
def test_optimising_all_nodes(node):
assume(compute_max_children(node.type, node.constraints) > 50)
size_function = {
"integer": lambda n: n,
"float": lambda f: f if math.isfinite(f) else 0,
"string": lambda s: len(s),
"bytes": lambda b: len(b),
"boolean": lambda b: int(b),
}
def test(data):
v = getattr(data, f"draw_{node.type}")(**node.constraints)
data.target_observations["v"] = size_function[node.type](v)
runner = ConjectureRunner(
test, settings=settings(runner_settings, max_examples=50), random=Random(0)
)
runner.cached_test_function([node.value])
try:
runner.optimise_targets()
except RunIsComplete:
pass
|