1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
=============================
Details and advanced features
=============================
This is an account of slightly less common Hypothesis features that you don't need
to get started but will nevertheless make your life easier.
----------------------
Additional test output
----------------------
Normally the output of a failing test will look something like:
.. code::
Falsifying example: test_a_thing(x=1, y="foo")
With the ``repr`` of each keyword argument being printed.
Sometimes this isn't enough, either because you have a value with a
``__repr__()`` method that isn't very descriptive or because you need to see the output of some
intermediate steps of your test. That's where the ``note`` function comes in:
.. autofunction:: hypothesis.note
.. code-block:: pycon
>>> from hypothesis import given, note, strategies as st
>>> @given(st.lists(st.integers()), st.randoms())
... def test_shuffle_is_noop(ls, r):
... ls2 = list(ls)
... r.shuffle(ls2)
... note(f"Shuffle: {ls2!r}")
... assert ls == ls2
...
>>> try:
... test_shuffle_is_noop()
... except AssertionError:
... print("ls != ls2")
...
Falsifying example: test_shuffle_is_noop(ls=[0, 1], r=RandomWithSeed(1))
Shuffle: [1, 0]
ls != ls2
The note is printed for the minimal failing example of the test in order to include any
additional information you might need in your test.
.. _statistics:
---------------
Test statistics
---------------
If you are using :pypi:`pytest` you can see a number of statistics about the executed tests
by passing the command line argument ``--hypothesis-show-statistics``. This will include
some general statistics about the test:
For example if you ran the following with ``--hypothesis-show-statistics``:
.. code-block:: python
from hypothesis import given, strategies as st
@given(st.integers())
def test_integers(i):
pass
You would see:
.. code-block:: none
- during generate phase (0.06 seconds):
- Typical runtimes: < 1ms, ~ 47% in data generation
- 100 passing examples, 0 failing examples, 0 invalid examples
- Stopped because settings.max_examples=100
The final "Stopped because" line is particularly important to note: It tells you the
setting value that determined when the test should stop trying new examples. This
can be useful for understanding the behaviour of your tests. Ideally you'd always want
this to be :obj:`~hypothesis.settings.max_examples`.
In some cases (such as filtered and recursive strategies) you will see events mentioned
which describe some aspect of the data generation:
.. code-block:: python
from hypothesis import given, strategies as st
@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
pass
You would see something like:
.. code-block:: none
test_even_integers:
- during generate phase (0.08 seconds):
- Typical runtimes: < 1ms, ~ 57% in data generation
- 100 passing examples, 0 failing examples, 12 invalid examples
- Events:
* 51.79%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
* 10.71%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
- Stopped because settings.max_examples=100
You can also mark custom events in a test using the ``event`` function:
.. autofunction:: hypothesis.event
.. code:: python
from hypothesis import event, given, strategies as st
@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
event(f"i mod 3 = {i%3}")
You will then see output like:
.. code-block:: none
test_even_integers:
- during generate phase (0.09 seconds):
- Typical runtimes: < 1ms, ~ 59% in data generation
- 100 passing examples, 0 failing examples, 32 invalid examples
- Events:
* 54.55%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
* 31.06%, i mod 3 = 2
* 28.79%, i mod 3 = 0
* 24.24%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
* 15.91%, i mod 3 = 1
- Stopped because settings.max_examples=100
Arguments to ``event`` can be any hashable type, but two events will be considered the same
if they are the same when converted to a string with :obj:`python:str`.
------------------
Making assumptions
------------------
Sometimes Hypothesis doesn't give you exactly the right sort of data you want - it's
mostly of the right shape, but some examples won't work and you don't want to care about
them. You *can* just ignore these by aborting the test early, but this runs the risk of
accidentally testing a lot less than you think you are. Also it would be nice to spend
less time on bad examples - if you're running 100 examples per test (the default) and
it turns out 70 of those examples don't match your needs, that's a lot of wasted time.
.. autofunction:: hypothesis.assume
For example suppose you had the following test:
.. code:: python
@given(floats())
def test_negation_is_self_inverse(x):
assert x == -(-x)
Running this gives us:
.. code::
Falsifying example: test_negation_is_self_inverse(x=float('nan'))
AssertionError
This is annoying. We know about `NaN <https://docs.python.org/3/library/math.html>`__
and don't really care about it, but as soon as Hypothesis
finds a NaN example it will get distracted by that and tell us about it. Also
the test will fail and we want it to pass.
So let's block off this particular example:
.. code:: python
from math import isnan
@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
assume(not isnan(x))
assert x == -(-x)
And this passes without a problem.
In order to avoid the easy trap where you assume a lot more than you intended, Hypothesis
will fail a test when it can't find enough examples passing the assumption.
If we'd written:
.. code:: python
@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
assume(False)
assert x == -(-x)
Then on running we'd have got the exception:
.. code::
Unsatisfiable: Unable to satisfy assumptions of hypothesis test_negation_is_self_inverse_for_non_nan. Only 0 examples considered satisfied assumptions
~~~~~~~~~~~~~~~~~~~
How good is assume?
~~~~~~~~~~~~~~~~~~~
Hypothesis has an adaptive exploration strategy to try to avoid things which falsify
assumptions, which should generally result in it still being able to find examples in
hard to find situations.
Suppose we had the following:
.. code:: python
@given(lists(integers()))
def test_sum_is_positive(xs):
assert sum(xs) > 0
Unsurprisingly this fails and gives the falsifying example ``[]``.
Adding ``assume(xs)`` to this removes the trivial empty example and gives us ``[0]``.
Adding ``assume(all(x > 0 for x in xs))`` and it passes: the sum of a list of
positive integers is positive.
The reason that this should be surprising is not that it doesn't find a
counter-example, but that it finds enough examples at all.
In order to make sure something interesting is happening, suppose we wanted to
try this for long lists. e.g. suppose we added an ``assume(len(xs) > 10)`` to it.
This should basically never find an example: a naive strategy would find fewer
than one in a thousand examples, because if each element of the list is
negative with probability one-half, you'd have to have ten of these go the right
way by chance. In the default configuration Hypothesis gives up long before
it's tried 1000 examples (by default it tries 200).
Here's what happens if we try to run this:
.. code:: python
@given(lists(integers()))
def test_sum_is_positive(xs):
assume(len(xs) > 10)
assume(all(x > 0 for x in xs))
print(xs)
assert sum(xs) > 0
In: ``test_sum_is_positive()``
.. code:: python
[17, 12, 7, 13, 11, 3, 6, 9, 8, 11, 47, 27, 1, 31, 1]
[6, 2, 29, 30, 25, 34, 19, 15, 50, 16, 10, 3, 16]
[25, 17, 9, 19, 15, 2, 2, 4, 22, 10, 10, 27, 3, 1, 14, 17, 13, 8, 16, 9, 2, ...]
[17, 65, 78, 1, 8, 29, 2, 79, 28, 18, 39]
[13, 26, 8, 3, 4, 76, 6, 14, 20, 27, 21, 32, 14, 42, 9, 24, 33, 9, 5, 15, ...]
[2, 1, 2, 2, 3, 10, 12, 11, 21, 11, 1, 16]
As you can see, Hypothesis doesn't find *many* examples here, but it finds some - enough to
keep it happy.
In general if you *can* shape your strategies better to your tests you should - for example
:py:func:`integers(1, 1000) <hypothesis.strategies.integers>` is a lot better than
``assume(1 <= x <= 1000)``, but ``assume`` will take you a long way if you can't.
---------------------
Defining strategies
---------------------
The type of object that is used to explore the examples given to your test
function is called a :class:`~hypothesis.strategies.SearchStrategy`.
These are created using the functions
exposed in the :mod:`hypothesis.strategies` module.
Many of these strategies expose a variety of arguments you can use to customize
generation. For example for integers you can specify ``min`` and ``max`` values of
integers you want.
If you want to see exactly what a strategy produces you can ask for an example:
.. code-block:: pycon
>>> integers(min_value=0, max_value=10).example()
1
Many strategies are built out of other strategies. For example, if you want
to define a tuple you need to say what goes in each element:
.. code-block:: pycon
>>> from hypothesis.strategies import tuples
>>> tuples(integers(), integers()).example()
(-24597, 12566)
Further details are :doc:`available in a separate document <data>`.
------------------------------------
The gory details of given parameters
------------------------------------
.. autofunction:: hypothesis.given
The :func:`@given <hypothesis.given>` decorator may be used to specify
which arguments of a function should be parametrized over. You can use
either positional or keyword arguments, but not a mixture of both.
For example all of the following are valid uses:
.. code:: python
@given(integers(), integers())
def a(x, y):
pass
@given(integers())
def b(x, y):
pass
@given(y=integers())
def c(x, y):
pass
@given(x=integers())
def d(x, y):
pass
@given(x=integers(), y=integers())
def e(x, **kwargs):
pass
@given(x=integers(), y=integers())
def f(x, *args, **kwargs):
pass
class SomeTest(TestCase):
@given(integers())
def test_a_thing(self, x):
pass
The following are not:
.. code:: python
@given(integers(), integers(), integers())
def g(x, y):
pass
@given(integers())
def h(x, *args):
pass
@given(integers(), x=integers())
def i(x, y):
pass
@given()
def j(x, y):
pass
The rules for determining what are valid uses of ``given`` are as follows:
1. You may pass any keyword argument to ``given``.
2. Positional arguments to ``given`` are equivalent to the rightmost named
arguments for the test function.
3. Positional arguments may not be used if the underlying test function has
varargs, arbitrary keywords, or keyword-only arguments.
4. Functions tested with ``given`` may not have any defaults.
The reason for the "rightmost named arguments" behaviour is so that
using :func:`@given <hypothesis.given>` with instance methods works: ``self``
will be passed to the function as normal and not be parametrized over.
The function returned by given has all the same arguments as the original
test, minus those that are filled in by :func:`@given <hypothesis.given>`.
Check :ref:`the notes on framework compatibility <framework-compatibility>`
to see how this affects other testing libraries you may be using.
.. _targeted-search:
---------------------------
Targeted example generation
---------------------------
Targeted property-based testing combines the advantages of both search-based
and property-based testing. Instead of being completely random, T-PBT uses
a search-based component to guide the input generation towards values that
have a higher probability of falsifying a property. This explores the input
space more effectively and requires fewer tests to find a bug or achieve a
high confidence in the system being tested than random PBT.
(`Löscher and Sagonas <http://proper.softlab.ntua.gr/Publications.html>`__)
This is not *always* a good idea - for example calculating the search metric
might take time better spent running more uniformly-random test cases, or your
target metric might accidentally lead Hypothesis *away* from bugs - but if
there is a natural metric like "floating-point error", "load factor" or
"queue length", we encourage you to experiment with targeted testing.
.. autofunction:: hypothesis.target
.. code-block:: python
from hypothesis import given, strategies as st, target
@given(st.floats(0, 1e100), st.floats(0, 1e100), st.floats(0, 1e100))
def test_associativity_with_target(a, b, c):
ab_c = (a + b) + c
a_bc = a + (b + c)
difference = abs(ab_c - a_bc)
target(difference) # Without this, the test almost always passes
assert difference < 2.0
We recommend that users also skim the papers introducing targeted PBT;
from `ISSTA 2017 <http://proper.softlab.ntua.gr/papers/issta2017.pdf>`__
and `ICST 2018 <http://proper.softlab.ntua.gr/papers/icst2018.pdf>`__.
For the curious, the initial implementation in Hypothesis uses hill-climbing
search via a mutating fuzzer, with some tactics inspired by simulated
annealing to avoid getting stuck and endlessly mutating a local maximum.
.. _custom-function-execution:
-------------------------
Custom function execution
-------------------------
Hypothesis provides you with a hook that lets you control how it runs
examples.
This lets you do things like set up and tear down around each example, run
examples in a subprocess, transform coroutine tests into normal tests, etc.
For example, :class:`~hypothesis.extra.django.TransactionTestCase` in the
Django extra runs each example in a separate database transaction.
The way this works is by introducing the concept of an executor. An executor
is essentially a function that takes a block of code and run it. The default
executor is:
.. code:: python
def default_executor(function):
return function()
You define executors by defining a method ``execute_example`` on a class. Any
test methods on that class with :func:`@given <hypothesis.given>` used on them will use
``self.execute_example`` as an executor with which to run tests. For example,
the following executor runs all its code twice:
.. code:: python
from unittest import TestCase
class TestTryReallyHard(TestCase):
@given(integers())
def test_something(self, i):
perform_some_unreliable_operation(i)
def execute_example(self, f):
f()
return f()
Note: The functions you use in map, etc. will run *inside* the executor. i.e.
they will not be called until you invoke the function passed to ``execute_example``.
An executor must be able to handle being passed a function which returns None,
otherwise it won't be able to run normal test cases. So for example the following
executor is invalid:
.. code:: python
from unittest import TestCase
class TestRunTwice(TestCase):
def execute_example(self, f):
return f()()
and should be rewritten as:
.. code:: python
from unittest import TestCase
class TestRunTwice(TestCase):
def execute_example(self, f):
result = f()
if callable(result):
result = result()
return result
An alternative hook is provided for use by test runner extensions such as
:pypi:`pytest-trio`, which cannot use the ``execute_example`` method.
This is **not** recommended for end-users - it is better to write a complete
test function directly, perhaps by using a decorator to perform the same
transformation before applying :func:`@given <hypothesis.given>`.
.. code:: python
@given(x=integers())
@pytest.mark.trio
async def test(x):
...
# Illustrative code, inside the pytest-trio plugin
test.hypothesis.inner_test = lambda x: trio.run(test, x)
For authors of test runners however, assigning to the ``inner_test`` attribute
of the ``hypothesis`` attribute of the test will replace the interior test.
.. note::
The new ``inner_test`` must accept and pass through all the ``*args``
and ``**kwargs`` expected by the original test.
If the end user has also specified a custom executor using the
``execute_example`` method, it - and all other execution-time logic - will
be applied to the *new* inner test assigned by the test runner.
--------------------------------
Making random code deterministic
--------------------------------
While Hypothesis' example generation can be used for nondeterministic tests,
debugging anything nondeterministic is usually a very frustrating exercise.
To make things worse, our example *shrinking* relies on the same input
causing the same failure each time - though we show the un-shrunk failure
and a decent error message if it doesn't.
By default, Hypothesis will handle the global ``random`` and ``numpy.random``
random number generators for you, and you can register others:
.. autofunction:: hypothesis.register_random
.. _type-inference:
-------------------
Inferred strategies
-------------------
In some cases, Hypothesis can work out what to do when you omit arguments.
This is based on introspection, *not* magic, and therefore has well-defined
limits.
:func:`~hypothesis.strategies.builds` will check the signature of the
``target`` (using :func:`~python:inspect.signature`).
If there are required arguments with type annotations and
no strategy was passed to :func:`~hypothesis.strategies.builds`,
:func:`~hypothesis.strategies.from_type` is used to fill them in.
You can also pass the value ``...`` (``Ellipsis``) as a keyword
argument, to force this inference for arguments with a default value.
.. code-block:: pycon
>>> def func(a: int, b: str):
... return [a, b]
...
>>> builds(func).example()
[-6993, '']
.. data:: hypothesis.infer
:func:`@given <hypothesis.given>` does not perform any implicit inference
for required arguments, as this would break compatibility with pytest fixtures.
``...`` (:obj:`python:Ellipsis`), can be used as a keyword argument to explicitly fill
in an argument from its type annotation. You can also use the ``hypothesis.infer``
alias if writing a literal ``...`` seems too weird.
.. code:: python
@given(a=...) # or @given(a=infer)
def test(a: int):
pass
# is equivalent to
@given(a=from_type(int))
def test(a):
pass
``@given(...)`` can also be specified to fill all arguments from their type annotations.
.. code:: python
@given(...)
def test(a: int, b: str):
pass
# is equivalent to
@given(a=..., b=...)
def test(a, b):
pass
~~~~~~~~~~~
Limitations
~~~~~~~~~~~
Hypothesis does not inspect :pep:`484` type comments at runtime. While
:func:`~hypothesis.strategies.from_type` will work as usual, inference in
:func:`~hypothesis.strategies.builds` and :func:`@given <hypothesis.given>`
will only work if you manually create the ``__annotations__`` attribute
(e.g. by using ``@annotations(...)`` and ``@returns(...)`` decorators).
The :mod:`python:typing` module changes between different Python releases,
including at minor versions. These
are all supported on a best-effort basis,
but you may encounter problems. Please report them to us, and consider
updating to a newer version of Python as a workaround.
.. _our-type-hints:
------------------------------
Type annotations in Hypothesis
------------------------------
If you install Hypothesis and use :pypi:`mypy` 0.590+, or another
:PEP:`561`-compatible tool, the type checker should automatically pick
up our type hints.
.. note::
Hypothesis' type hints may make breaking changes between minor releases.
Upstream tools and conventions about type hints remain in flux - for
example the :mod:`python:typing` module itself is provisional, and Mypy
has not yet reached version 1.0 - and we plan to support the latest
version of this ecosystem, as well as older versions where practical.
We may also find more precise ways to describe the type of various
interfaces, or change their type and runtime behaviour together in a way
which is otherwise backwards-compatible. We often omit type hints for
deprecated features or arguments, as an additional form of warning.
There are known issues inferring the type of examples generated by
:func:`~hypothesis.strategies.deferred`, :func:`~hypothesis.strategies.recursive`,
:func:`~hypothesis.strategies.one_of`, :func:`~hypothesis.strategies.dictionaries`,
and :func:`~hypothesis.strategies.fixed_dictionaries`.
We will fix these, and require correspondingly newer versions of Mypy for type
hinting, as the ecosystem improves.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Writing downstream type hints
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Projects that :doc:`provide Hypothesis strategies <strategies>` and use
type hints may wish to annotate their strategies too. This *is* a
supported use-case, again on a best-effort provisional basis. For example:
.. code:: python
def foo_strategy() -> SearchStrategy[Foo]:
...
.. class:: hypothesis.strategies.SearchStrategy
:class:`~hypothesis.strategies.SearchStrategy` is the type of all strategy
objects. It is a generic type, and covariant in the type of the examples
it creates. For example:
- ``integers()`` is of type ``SearchStrategy[int]``.
- ``lists(integers())`` is of type ``SearchStrategy[List[int]]``.
- ``SearchStrategy[Dog]`` is a subtype of ``SearchStrategy[Animal]``
if ``Dog`` is a subtype of ``Animal`` (as seems likely).
.. warning::
:class:`~hypothesis.strategies.SearchStrategy` **should only be used
in type hints.** Please do not inherit from, compare to, or otherwise
use it in any way outside of type hints. The only supported way to
construct objects of this type is to use the functions provided by the
:mod:`hypothesis.strategies` module!
.. _pytest-plugin:
----------------------------
The Hypothesis pytest plugin
----------------------------
Hypothesis includes a tiny plugin to improve integration with :pypi:`pytest`,
which is activated by default (but does not affect other test runners).
It aims to improve the integration between Hypothesis and Pytest by
providing extra information and convenient access to config options.
- ``pytest --hypothesis-show-statistics`` can be used to
:ref:`display test and data generation statistics <statistics>`.
- ``pytest --hypothesis-profile=<profile name>`` can be used to
:ref:`load a settings profile <settings_profiles>`.
- ``pytest --hypothesis-verbosity=<level name>`` can be used to
:ref:`override the current verbosity level <verbose-output>`.
- ``pytest --hypothesis-seed=<an int>`` can be used to
:ref:`reproduce a failure with a particular seed <reproducing-with-seed>`.
- ``pytest --hypothesis-explain`` can be used to
:ref:`temporarily enable the explain phase <phases>`.
Finally, all tests that are defined with Hypothesis automatically have
``@pytest.mark.hypothesis`` applied to them. See :ref:`here for information
on working with markers <pytest:mark examples>`.
.. note::
Pytest will load the plugin automatically if Hypothesis is installed.
You don't need to do anything at all to use it.
.. _fuzz_one_input:
-------------------------
Use with external fuzzers
-------------------------
.. tip::
| Want an integrated workflow for your team's local tests, CI, and continuous fuzzing?
| Use `HypoFuzz <https://hypofuzz.com/>`__ to fuzz your whole test suite,
and find more bugs without more tests!
Sometimes, you might want to point a traditional fuzzer such as
`python-afl <https://github.com/jwilk/python-afl>`__, :pypi:`pythonfuzz`,
or Google's :pypi:`atheris` (for Python *and* native extensions)
at your code. Wouldn't it be nice if you could use any of your
:func:`@given <hypothesis.given>` tests as fuzz targets, instead of
converting bytestrings into your objects by hand?
.. code:: python
@given(st.text())
def test_foo(s):
...
# This is a traditional fuzz target - call it with a bytestring,
# or a binary IO object, and it runs the test once.
fuzz_target = test_foo.hypothesis.fuzz_one_input
# For example:
fuzz_target(b"\x00\x00\x00\x00\x00\x00\x00\x00")
fuzz_target(io.BytesIO(...))
Depending on the input to ``fuzz_one_input``, one of three things will happen:
- If the bytestring was invalid, for example because it was too short or
failed a filter or :func:`~hypothesis.assume` too many times,
``fuzz_one_input`` returns ``None``.
- If the bytestring was valid and the test passed, ``fuzz_one_input`` returns
a canonicalised and pruned buffer which will replay that test case. This
is provided as an option to improve the performance of mutating fuzzers,
but can safely be ignored.
- If the test *failed*, i.e. raised an exception, ``fuzz_one_input`` will add
the pruned buffer to :doc:`the Hypothesis example database <database>`
and then re-raise that exception. All you need to do to reproduce, minimize,
and de-duplicate all the failures found via fuzzing is run your test suite!
Note that the interpretation of both input and output bytestrings is specific
to the exact version of Hypothesis you are using and the strategies given to
the test, just like the :doc:`example database <database>` and
:func:`@reproduce_failure <hypothesis.reproduce_failure>` decorator.
~~~~~~~~~~~~~~~~~~~~~~~~~
Interaction with settings
~~~~~~~~~~~~~~~~~~~~~~~~~
``fuzz_one_input`` uses just enough of Hypothesis' internals to drive your
test function with a fuzzer-provided bytestring, and most settings therefore
have no effect in this mode. We recommend running your tests the usual way
before fuzzing to get the benefits of healthchecks, as well as afterwards to
replay, shrink, deduplicate, and report whatever errors were discovered.
- The :obj:`~hypothesis.settings.database` setting *is* used by fuzzing mode -
adding failures to the database to be replayed when you next run your tests
is our preferred reporting mechanism and response to
`the 'fuzzer taming' problem <https://blog.regehr.org/archives/925>`__.
- The :obj:`~hypothesis.settings.verbosity` and
:obj:`~hypothesis.settings.stateful_step_count` settings work as usual.
The ``deadline``, ``derandomize``, ``max_examples``, ``phases``, ``print_blob``,
``report_multiple_bugs``, and ``suppress_health_check`` settings do not affect
fuzzing mode.
--------------------
Thread-Safety Policy
--------------------
As discussed in :issue:`2719`, Hypothesis is not truly thread-safe and that's
unlikely to change in the future. This policy therefore describes what you
*can* expect if you use Hypothesis with multiple threads.
**Running tests in multiple processes**, e.g. with ``pytest -n auto``, is fully
supported and we test this regularly in CI - thanks to process isolation, we only
need to ensure that :class:`~hypothesis.database.DirectoryBasedExampleDatabase`
can't tread on its own toes too badly. If you find a bug here we will fix it ASAP.
**Running separate tests in multiple threads** is not something we design or test
for, and is not formally supported. That said, anecdotally it does mostly work and
we would like it to keep working - we accept reasonable patches and low-priority
bug reports. The main risks here are global state, shared caches, and cached strategies.
**Using multiple threads within a single test** , or running a single test simultaneously
in multiple threads, makes it pretty easy to trigger internal errors. We usually accept
patches for such issues unless readability or single-thread performance suffer.
Hypothesis assumes that tests are single-threaded, or do a sufficiently-good job of
pretending to be single-threaded. Tests that use helper threads internally should be OK,
but the user must be careful to ensure that test outcomes are still deterministic.
In particular it counts as nondeterministic if helper-thread timing changes the sequence
of dynamic draws using e.g. the :func:`~hypothesis.strategies.data`.
Interacting with any Hypothesis APIs from helper threads might do weird/bad things,
so avoid that too - we rely on thread-local variables in a few places, and haven't
explicitly tested/audited how they respond to cross-thread API calls. While
:func:`~hypothesis.strategies.data` and equivalents are the most obvious danger,
other APIs might also be subtly affected.
|