File: common.py

package info (click to toggle)
python-hypothesis 6.67.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,220 kB
  • sloc: python: 46,711; ruby: 1,107; sh: 255; xml: 140; makefile: 49; javascript: 12
file content (69 lines) | stat: -rw-r--r-- 2,149 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

from contextlib import contextmanager

from hypothesis import HealthCheck, settings
from hypothesis.internal.conjecture import engine as engine_module
from hypothesis.internal.conjecture.data import Status
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.conjecture.utils import calc_label_from_name
from hypothesis.internal.entropy import deterministic_PRNG

SOME_LABEL = calc_label_from_name("some label")


TEST_SETTINGS = settings(
    max_examples=5000, database=None, suppress_health_check=HealthCheck.all()
)


def run_to_data(f):
    with deterministic_PRNG():
        runner = ConjectureRunner(f, settings=TEST_SETTINGS)
        runner.run()
        assert runner.interesting_examples
        (last_data,) = runner.interesting_examples.values()
        return last_data


def run_to_buffer(f):
    return bytes(run_to_data(f).buffer)


@contextmanager
def buffer_size_limit(n):
    original = engine_module.BUFFER_SIZE
    try:
        engine_module.BUFFER_SIZE = n
        yield
    finally:
        engine_module.BUFFER_SIZE = original


def shrinking_from(start):
    def accept(f):
        with deterministic_PRNG():
            runner = ConjectureRunner(
                f,
                settings=settings(
                    max_examples=5000,
                    database=None,
                    suppress_health_check=HealthCheck.all(),
                ),
            )
            runner.cached_test_function(start)
            assert runner.interesting_examples
            (last_data,) = runner.interesting_examples.values()
            return runner.new_shrinker(
                last_data, lambda d: d.status == Status.INTERESTING
            )

    return accept