1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import os
import sys
from contextlib import contextmanager
from itertools import islice
import pytest
from hypothesis import settings
from hypothesis.internal.conjecture.data import Status
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.conjecture.shrinking import dfas
TEST_DFA_NAME = "test name"
@contextmanager
def preserving_dfas():
assert TEST_DFA_NAME not in dfas.SHRINKING_DFAS
for k in dfas.SHRINKING_DFAS:
assert not k.startswith(TEST_DFA_NAME)
original = dict(dfas.SHRINKING_DFAS)
try:
yield
finally:
dfas.SHRINKING_DFAS.clear()
dfas.SHRINKING_DFAS.update(original)
dfas.update_learned_dfas()
assert TEST_DFA_NAME not in dfas.SHRINKING_DFAS
with open(dfas.learned_dfa_file) as i:
assert TEST_DFA_NAME not in i.read()
def test_updating_the_file_makes_no_changes_normally():
with open(dfas.learned_dfa_file) as i:
source1 = i.read()
dfas.update_learned_dfas()
with open(dfas.learned_dfa_file) as i:
source2 = i.read()
assert source1 == source2
def test_updating_the_file_include_new_shrinkers():
with preserving_dfas():
with open(dfas.learned_dfa_file) as i:
source1 = i.read()
dfas.SHRINKING_DFAS[TEST_DFA_NAME] = "hello"
dfas.update_learned_dfas()
with open(dfas.learned_dfa_file) as i:
source2 = i.read()
assert source1 != source2
assert repr(TEST_DFA_NAME) in source2
assert TEST_DFA_NAME not in dfas.SHRINKING_DFAS
with open(dfas.learned_dfa_file) as i:
assert "test name" not in i.read()
def called_by_shrinker():
frame = sys._getframe(0)
while frame:
fname = frame.f_globals.get("__file__", "")
if os.path.basename(fname) == "shrinker.py":
return True
frame = frame.f_back
return False
def a_bad_test_function():
"""Return a test function that we definitely can't normalize
because it cheats shamelessly and checks whether it's being
called by the shrinker and refuses to declare any new results
interesting."""
cache = {0: False}
def test_function(data):
n = data.draw_bits(64)
if n < 1000:
return
try:
interesting = cache[n]
except KeyError:
interesting = cache.setdefault(n, not called_by_shrinker())
if interesting:
data.mark_interesting()
return test_function
def test_will_error_if_does_not_normalise_and_cannot_update():
with pytest.raises(dfas.FailedToNormalise) as excinfo:
dfas.normalize(
"bad",
a_bad_test_function(),
required_successes=10,
allowed_to_update=False,
)
assert "not allowed" in excinfo.value.args[0]
def test_will_error_if_takes_too_long_to_normalize():
with preserving_dfas():
with pytest.raises(dfas.FailedToNormalise) as excinfo:
dfas.normalize(
"bad",
a_bad_test_function(),
required_successes=1000,
allowed_to_update=True,
max_dfas=0,
)
assert "too hard" in excinfo.value.args[0]
def non_normalized_test_function(data):
"""This test function has two discrete regions that it
is hard to move between. It's basically unreasonable for
our shrinker to be able to transform from one to the other
because of how different they are."""
data.draw_bits(8)
if data.draw_bits(1):
n = data.draw_bits(10)
if 100 < n < 1000:
data.draw_bits(8)
data.mark_interesting()
else:
n = data.draw_bits(64)
if n > 10000:
data.draw_bits(8)
data.mark_interesting()
def test_can_learn_to_normalize_the_unnormalized():
with preserving_dfas():
prev = len(dfas.SHRINKING_DFAS)
dfas.normalize(
TEST_DFA_NAME, non_normalized_test_function, allowed_to_update=True
)
assert len(dfas.SHRINKING_DFAS) == prev + 1
def test_will_error_on_uninteresting_test():
with pytest.raises(AssertionError):
dfas.normalize(TEST_DFA_NAME, lambda data: data.draw_bits(64))
def test_makes_no_changes_if_already_normalized():
def test_function(data):
if data.draw_bits(16) >= 1000:
data.mark_interesting()
with preserving_dfas():
before = dict(dfas.SHRINKING_DFAS)
dfas.normalize(TEST_DFA_NAME, test_function, allowed_to_update=True)
after = dict(dfas.SHRINKING_DFAS)
assert after == before
def test_learns_to_bridge_only_two():
def test_function(data):
m = data.draw_bits(8)
n = data.draw_bits(8)
if (m, n) in ((10, 100), (2, 8)):
data.mark_interesting()
runner = ConjectureRunner(
test_function, settings=settings(database=None), ignore_limits=True
)
dfa = dfas.learn_a_new_dfa(
runner, [10, 100], [2, 8], lambda d: d.status == Status.INTERESTING
)
assert dfa.max_length(dfa.start) == 2
assert list(map(list, dfa.all_matching_strings())) == [
[2, 8],
[10, 100],
]
def test_learns_to_bridge_only_two_with_overlap():
u = [50, 0, 0, 0, 50]
v = [50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50]
def test_function(data):
for i in range(len(u)):
c = data.draw_bits(8)
if c != u[i]:
if c != v[i]:
return
break
else:
data.mark_interesting()
for j in range(i + 1, len(v)):
if data.draw_bits(8) != v[j]:
return
data.mark_interesting()
runner = ConjectureRunner(
test_function, settings=settings(database=None), ignore_limits=True
)
dfa = dfas.learn_a_new_dfa(runner, u, v, lambda d: d.status == Status.INTERESTING)
assert list(islice(dfa.all_matching_strings(), 3)) == [b"", bytes(len(v) - len(u))]
def test_learns_to_bridge_only_two_with_suffix():
u = [7]
v = [0] * 10 + [7]
def test_function(data):
n = data.draw_bits(8)
if n == 7:
data.mark_interesting()
elif n != 0:
return
for _ in range(9):
if data.draw_bits(8) != 0:
return
if data.draw_bits(8) == 7:
data.mark_interesting()
runner = ConjectureRunner(
test_function, settings=settings(database=None), ignore_limits=True
)
dfa = dfas.learn_a_new_dfa(runner, u, v, lambda d: d.status == Status.INTERESTING)
assert list(islice(dfa.all_matching_strings(), 3)) == [b"", bytes(len(v) - len(u))]
|