File: test_health_checks.py

package info (click to toggle)
python-hypothesis 6.67.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,220 kB
  • sloc: python: 46,711; ruby: 1,107; sh: 255; xml: 140; makefile: 49; javascript: 12
file content (294 lines) | stat: -rw-r--r-- 8,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import time

import pytest
from pytest import raises

from hypothesis import HealthCheck, Phase, given, settings, strategies as st
from hypothesis.control import assume
from hypothesis.errors import FailedHealthCheck, InvalidArgument
from hypothesis.internal.compat import int_from_bytes
from hypothesis.internal.conjecture.data import ConjectureData
from hypothesis.internal.entropy import deterministic_PRNG
from hypothesis.stateful import (
    RuleBasedStateMachine,
    initialize,
    invariant,
    rule,
    run_state_machine_as_test,
)
from hypothesis.strategies._internal.lazy import LazyStrategy
from hypothesis.strategies._internal.strategies import SearchStrategy

from tests.common.utils import no_shrink

HEALTH_CHECK_SETTINGS = settings(max_examples=11, database=None)


def test_slow_generation_fails_a_health_check():
    @HEALTH_CHECK_SETTINGS
    @given(st.integers().map(lambda x: time.sleep(0.2)))
    def test(x):
        pass

    with raises(FailedHealthCheck):
        test()


def test_slow_generation_inline_fails_a_health_check():
    @HEALTH_CHECK_SETTINGS
    @given(st.data())
    def test(data):
        data.draw(st.integers().map(lambda x: time.sleep(0.2)))

    with raises(FailedHealthCheck):
        test()


def test_default_health_check_can_weaken_specific():
    import random

    @settings(HEALTH_CHECK_SETTINGS, suppress_health_check=HealthCheck.all())
    @given(st.lists(st.integers(), min_size=1))
    def test(x):
        random.choice(x)

    test()


def test_suppressing_filtering_health_check():
    forbidden = set()

    def unhealthy_filter(x):
        if len(forbidden) < 200:
            forbidden.add(x)
        return x not in forbidden

    @HEALTH_CHECK_SETTINGS
    @given(st.integers().filter(unhealthy_filter))
    def test1(x):
        raise ValueError()

    with raises(FailedHealthCheck):
        test1()

    forbidden = set()

    @settings(suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.too_slow])
    @given(st.integers().filter(unhealthy_filter))
    def test2(x):
        raise ValueError()

    with raises(ValueError):
        test2()


def test_filtering_everything_fails_a_health_check():
    @given(st.integers().filter(lambda x: False))
    @settings(database=None)
    def test(x):
        pass

    with raises(FailedHealthCheck) as e:
        test()
    assert "filter" in e.value.args[0]


class fails_regularly(SearchStrategy):
    def do_draw(self, data):
        b = int_from_bytes(data.draw_bytes(2))
        assume(b == 3)
        print("ohai")


def test_filtering_most_things_fails_a_health_check():
    @given(fails_regularly())
    @settings(database=None, phases=no_shrink)
    def test(x):
        pass

    with raises(FailedHealthCheck) as e:
        test()
    assert "filter" in e.value.args[0]


def test_large_data_will_fail_a_health_check():
    @given(st.none() | st.binary(min_size=10**5, max_size=10**5))
    @settings(database=None)
    def test(x):
        pass

    with raises(FailedHealthCheck) as e:
        test()
    assert "allowable size" in e.value.args[0]


def test_returning_non_none_is_forbidden():
    @given(st.integers())
    def a(x):
        return 1

    with raises(FailedHealthCheck):
        a()


def test_the_slow_test_health_check_can_be_disabled():
    @given(st.integers())
    @settings(deadline=None)
    def a(x):
        time.sleep(1000)

    a()


def test_the_slow_test_health_only_runs_if_health_checks_are_on():
    @given(st.integers())
    @settings(suppress_health_check=HealthCheck.all(), deadline=None)
    def a(x):
        time.sleep(1000)

    a()


def test_returning_non_none_does_not_fail_if_health_check_disabled():
    @given(st.integers())
    @settings(suppress_health_check=HealthCheck.all())
    def a(x):
        return 1

    a()


def test_large_base_example_fails_health_check():
    @given(st.binary(min_size=7000, max_size=7000))
    def test(b):
        pass

    with pytest.raises(FailedHealthCheck) as exc:
        test()

    assert str(HealthCheck.large_base_example) in str(exc.value)


def test_example_that_shrinks_to_overrun_fails_health_check():
    @given(st.binary(min_size=9000, max_size=9000) | st.none())
    def test(b):
        pass

    with pytest.raises(FailedHealthCheck) as exc:
        test()

    assert str(HealthCheck.large_base_example) in str(exc.value)


def test_it_is_an_error_to_suppress_non_iterables():
    with raises(InvalidArgument):
        settings(suppress_health_check=1)


def test_it_is_an_error_to_suppress_non_healthchecks():
    with raises(InvalidArgument):
        settings(suppress_health_check=[1])


slow_down_init = True


def slow_init_integers(*args, **kwargs):
    # This mimics st.characters() or st.text(), which perform some
    # expensive Unicode calculations when the cache is empty.
    global slow_down_init
    if slow_down_init:
        time.sleep(0.5)  # We monkeypatch time, so this is fast
        slow_down_init = False
    return st.integers(*args, **kwargs)


@given(st.data())
def test_lazy_slow_initialization_issue_2108_regression(data):
    # Slow init in strategies wrapped in a LazyStrategy, inside an interactive draw,
    # should be attributed to drawing from the strategy (not the test function).
    # Specifically, this used to fail with a DeadlineExceeded error.
    data.draw(LazyStrategy(slow_init_integers, (), {}))


def test_does_not_trigger_health_check_on_simple_strategies(monkeypatch):
    existing_draw_bits = ConjectureData.draw_bits

    # We need to make drawing data artificially slow in order to trigger this
    # effect. This isn't actually slow because time is fake in our CI, but
    # we need it to pretend to be.
    def draw_bits(self, n, forced=None):
        time.sleep(0.001)
        return existing_draw_bits(self, n, forced=forced)

    monkeypatch.setattr(ConjectureData, "draw_bits", draw_bits)

    with deterministic_PRNG():
        for _ in range(100):
            # Setting max_examples=11 ensures we have enough examples for the
            # health checks to finish running, but cuts the generation short
            # after that point to allow this test to run in reasonable time.
            @settings(database=None, max_examples=11, phases=[Phase.generate])
            @given(st.binary())
            def test(b):
                pass

            test()


def test_does_not_trigger_health_check_when_most_examples_are_small(monkeypatch):
    with deterministic_PRNG():
        for _ in range(100):
            # Setting max_examples=11 ensures we have enough examples for the
            # health checks to finish running, but cuts the generation short
            # after that point to allow this test to run in reasonable time.
            @settings(database=None, max_examples=11, phases=[Phase.generate])
            @given(
                st.integers(0, 100).flatmap(
                    lambda n: st.binary(min_size=n * 100, max_size=n * 100)
                )
            )
            def test(b):
                pass

            test()


class ReturningRuleMachine(RuleBasedStateMachine):
    @rule()
    def r(self):
        return "any non-None value"


class ReturningInitializeMachine(RuleBasedStateMachine):
    _ = rule()(lambda self: None)

    @initialize()
    def r(self):
        return "any non-None value"


class ReturningInvariantMachine(RuleBasedStateMachine):
    _ = rule()(lambda self: None)

    @invariant(check_during_init=True)
    def r(self):
        return "any non-None value"


@pytest.mark.parametrize(
    "cls", [ReturningRuleMachine, ReturningInitializeMachine, ReturningInvariantMachine]
)
def test_stateful_returnvalue_healthcheck(cls):
    with pytest.raises(FailedHealthCheck):
        run_state_machine_as_test(cls, settings=settings())