1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
from collections import OrderedDict, namedtuple
from fractions import Fraction
from functools import reduce
import pytest
import hypothesis.strategies as st
from hypothesis import assume, settings
from hypothesis.strategies import (
booleans,
builds,
dictionaries,
fixed_dictionaries,
fractions,
frozensets,
integers,
just,
lists,
none,
sampled_from,
sets,
text,
tuples,
)
from tests.common.debug import minimal
from tests.common.utils import flaky
def test_integers_from_minimizes_leftwards():
assert minimal(integers(min_value=101)) == 101
def test_minimize_bounded_integers_to_zero():
assert minimal(integers(-10, 10)) == 0
def test_minimize_bounded_integers_to_positive():
zero = 0
def not_zero(x):
return x != zero
assert minimal(integers(-10, 10).filter(not_zero)) == 1
def test_minimal_fractions_1():
assert minimal(fractions()) == Fraction(0)
def test_minimal_fractions_2():
assert minimal(fractions(), lambda x: x >= 1) == Fraction(1)
def test_minimal_fractions_3():
assert minimal(lists(fractions()), lambda s: len(s) >= 5) == [Fraction(0)] * 5
def test_minimize_string_to_empty():
assert minimal(text()) == ""
def test_minimize_one_of():
for _ in range(100):
assert minimal(integers() | text() | booleans()) in (0, "", False)
def test_minimize_mixed_list():
mixed = minimal(lists(integers() | text()), lambda x: len(x) >= 10)
assert set(mixed).issubset({0, ""})
def test_minimize_longer_string():
assert minimal(text(), lambda x: len(x) >= 10) == "0" * 10
def test_minimize_longer_list_of_strings():
assert minimal(lists(text()), lambda x: len(x) >= 10) == [""] * 10
def test_minimize_3_set():
assert minimal(sets(integers()), lambda x: len(x) >= 3) in ({0, 1, 2}, {-1, 0, 1})
def test_minimize_3_set_of_tuples():
assert minimal(sets(tuples(integers())), lambda x: len(x) >= 2) == {(0,), (1,)}
def test_minimize_sets_of_sets():
elements = integers(1, 100)
size = 8
set_of_sets = minimal(sets(frozensets(elements), min_size=size))
assert frozenset() in set_of_sets
assert len(set_of_sets) == size
for s in set_of_sets:
if len(s) > 1:
assert any(s != t and t.issubset(s) for t in set_of_sets)
def test_can_simplify_flatmap_with_bounded_left_hand_size():
assert (
minimal(booleans().flatmap(lambda x: lists(just(x))), lambda x: len(x) >= 10)
== [False] * 10
)
def test_can_simplify_across_flatmap_of_just():
assert minimal(integers().flatmap(just)) == 0
def test_can_simplify_on_right_hand_strategy_of_flatmap():
assert minimal(integers().flatmap(lambda x: lists(just(x)))) == []
@flaky(min_passes=5, max_runs=5)
def test_can_ignore_left_hand_side_of_flatmap():
assert (
minimal(integers().flatmap(lambda x: lists(integers())), lambda x: len(x) >= 10)
== [0] * 10
)
def test_can_simplify_on_both_sides_of_flatmap():
assert (
minimal(integers().flatmap(lambda x: lists(just(x))), lambda x: len(x) >= 10)
== [0] * 10
)
def test_flatmap_rectangles():
lengths = integers(min_value=0, max_value=10)
def lists_of_length(n):
return lists(sampled_from("ab"), min_size=n, max_size=n)
xs = minimal(
lengths.flatmap(lambda w: lists(lists_of_length(w))),
lambda x: ["a", "b"] in x,
settings=settings(database=None, max_examples=2000),
)
assert xs == [["a", "b"]]
@flaky(min_passes=5, max_runs=5)
@pytest.mark.parametrize("dict_class", [dict, OrderedDict])
def test_dictionary(dict_class):
assert (
minimal(dictionaries(keys=integers(), values=text(), dict_class=dict_class))
== dict_class()
)
x = minimal(
dictionaries(keys=integers(), values=text(), dict_class=dict_class),
lambda t: len(t) >= 3,
)
assert isinstance(x, dict_class)
assert set(x.values()) == {""}
for k in x:
if k < 0:
assert k + 1 in x
if k > 0:
assert k - 1 in x
def test_minimize_single_element_in_silly_large_int_range():
ir = integers(-(2**256), 2**256)
assert minimal(ir, lambda x: x >= -(2**255)) == 0
def test_minimize_multiple_elements_in_silly_large_int_range():
desired_result = [0] * 20
ir = integers(-(2**256), 2**256)
x = minimal(lists(ir), lambda x: len(x) >= 20, timeout_after=20)
assert x == desired_result
def test_minimize_multiple_elements_in_silly_large_int_range_min_is_not_dupe():
ir = integers(0, 2**256)
target = list(range(20))
x = minimal(
lists(ir),
lambda x: (assume(len(x) >= 20) and all(x[i] >= target[i] for i in target)),
timeout_after=60,
)
assert x == target
def test_find_large_union_list():
size = 10
def large_mostly_non_overlapping(xs):
union = reduce(set.union, xs)
return len(union) >= size
result = minimal(
lists(sets(integers(), min_size=1), min_size=1),
large_mostly_non_overlapping,
timeout_after=120,
)
assert len(result) == 1
union = reduce(set.union, result)
assert len(union) == size
assert max(union) == min(union) + len(union) - 1
@pytest.mark.parametrize("n", [0, 1, 10, 100, 1000])
@pytest.mark.parametrize(
"seed", [13878544811291720918, 15832355027548327468, 12901656430307478246]
)
def test_containment(n, seed):
iv = minimal(
tuples(lists(integers()), integers()),
lambda x: x[1] in x[0] and x[1] >= n,
timeout_after=60,
)
assert iv == ([n], n)
def test_duplicate_containment():
ls, i = minimal(
tuples(lists(integers()), integers()),
lambda s: s[0].count(s[1]) > 1,
timeout_after=100,
)
assert ls == [0, 0]
assert i == 0
@pytest.mark.parametrize("seed", [11, 28, 37])
def test_reordering_bytes(seed):
ls = minimal(lists(integers()), lambda x: sum(x) >= 10 and len(x) >= 3)
assert ls == sorted(ls)
def test_minimize_long_list():
assert (
minimal(lists(booleans(), min_size=50), lambda x: len(x) >= 70) == [False] * 70
)
def test_minimize_list_of_longish_lists():
size = 5
xs = minimal(
lists(lists(booleans())),
lambda x: len([t for t in x if any(t) and len(t) >= 2]) >= size,
)
assert len(xs) == size
for x in xs:
assert x == [False, True]
def test_minimize_list_of_fairly_non_unique_ints():
xs = minimal(lists(integers()), lambda x: len(set(x)) < len(x))
assert len(xs) == 2
def test_list_with_complex_sorting_structure():
xs = minimal(
lists(lists(booleans())),
lambda x: [list(reversed(t)) for t in x] > x and len(x) > 3,
)
assert len(xs) == 4
def test_list_with_wide_gap():
xs = minimal(lists(integers()), lambda x: x and (max(x) > min(x) + 10 > 0))
assert len(xs) == 2
xs.sort()
assert xs[1] == 11 + xs[0]
def test_minimize_namedtuple():
T = namedtuple("T", ("a", "b"))
tab = minimal(builds(T, integers(), integers()), lambda x: x.a < x.b)
assert tab.b == tab.a + 1
def test_minimize_dict():
tab = minimal(
fixed_dictionaries({"a": booleans(), "b": booleans()}),
lambda x: x["a"] or x["b"],
)
assert not (tab["a"] and tab["b"])
def test_minimize_list_of_sets():
assert minimal(
lists(sets(booleans())), lambda x: len(list(filter(None, x))) >= 3
) == ([{False}] * 3)
def test_minimize_list_of_lists():
assert minimal(
lists(lists(integers())), lambda x: len(list(filter(None, x))) >= 3
) == ([[0]] * 3)
def test_minimize_list_of_tuples():
xs = minimal(lists(tuples(integers(), integers())), lambda x: len(x) >= 2)
assert xs == [(0, 0), (0, 0)]
def test_minimize_multi_key_dicts():
assert minimal(dictionaries(keys=booleans(), values=booleans()), bool) == {
False: False
}
def test_multiple_empty_lists_are_independent():
x = minimal(lists(lists(none(), max_size=0)), lambda t: len(t) >= 2)
u, v = x
assert u is not v
def test_can_find_sets_unique_by_incomplete_data():
size = 5
ls = minimal(
lists(tuples(integers(), integers()), unique_by=max), lambda x: len(x) >= size
)
assert len(ls) == size
values = sorted(map(max, ls))
assert values[-1] - values[0] == size - 1
for u, _ in ls:
assert u <= 0
@pytest.mark.parametrize("n", range(10))
def test_lists_forced_near_top(n):
assert minimal(
lists(integers(), min_size=n, max_size=n + 2), lambda t: len(t) == n + 2
) == [0] * (n + 2)
def test_sum_of_pair():
assert minimal(
tuples(integers(0, 1000), integers(0, 1000)), lambda x: sum(x) > 1000
) == (1, 1000)
def test_calculator_benchmark():
"""This test comes from
https://github.com/jlink/shrinking-challenge/blob/main/challenges/calculator.md,
which is originally from Pike, Lee. "SmartCheck: automatic and efficient
counterexample reduction and generalization."
Proceedings of the 2014 ACM SIGPLAN symposium on Haskell. 2014.
"""
expression = st.deferred(
lambda: st.one_of(
st.integers(),
st.tuples(st.just("+"), expression, expression),
st.tuples(st.just("/"), expression, expression),
)
)
def div_subterms(e):
if isinstance(e, int):
return True
if e[0] == "/" and e[-1] == 0:
return False
return div_subterms(e[1]) and div_subterms(e[2])
def evaluate(e):
if isinstance(e, int):
return e
elif e[0] == "+":
return evaluate(e[1]) + evaluate(e[2])
else:
assert e[0] == "/"
return evaluate(e[1]) // evaluate(e[2])
def is_failing(e):
assume(div_subterms(e))
try:
evaluate(e)
return False
except ZeroDivisionError:
return True
x = minimal(expression, is_failing)
assert x == ("/", 0, ("+", 0, 0))
|