1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
"""
.. _tutorials-bipartite-matching-maxflow:
==========================================
Maximum Bipartite Matching by Maximum Flow
==========================================
This example presents how to visualise bipartite matching using maximum flow (see :meth:`igraph.Graph.maxflow`).
.. note:: :meth:`igraph.Graph.maximum_bipartite_matching` is usually a better way to find the maximum bipartite matching. For a demonstration on how to use that method instead, check out :ref:`tutorials-bipartite-matching`.
"""
import igraph as ig
import matplotlib.pyplot as plt
# %%
# We start by creating the bipartite directed graph.
g = ig.Graph(
9,
[(0, 4), (0, 5), (1, 4), (1, 6), (1, 7), (2, 5), (2, 7), (2, 8), (3, 6), (3, 7)],
directed=True
)
# %%
# We assign:
# - nodes 0-3 to one side
# - nodes 4-8 to the other side
g.vs[range(4)]["type"] = True
g.vs[range(4, 9)]["type"] = False
# %%
# Then we add a source (vertex 9) and a sink (vertex 10)
g.add_vertices(2)
g.add_edges([(9, 0), (9, 1), (9, 2), (9, 3)]) # connect source to one side
g.add_edges([(4, 10), (5, 10), (6, 10), (7, 10), (8, 10)]) # ... and sinks to the other
flow = g.maxflow(9, 10)
print("Size of maximum matching (maxflow) is:", flow.value)
# %%
# Let's compare the output against :meth:`igraph.Graph.maximum_bipartite_matching`:
# delete the source and sink, which are unneeded for this function.
g2 = g.copy()
g2.delete_vertices([9, 10])
matching = g2.maximum_bipartite_matching()
matching_size = sum(1 for i in range(4) if matching.is_matched(i))
print("Size of maximum matching (maximum_bipartite_matching) is:", matching_size)
# %%
# Last, we can display the original flow graph nicely with the matchings added.
# To achieve a pleasant visual effect, we set the positions of source and sink
# manually:
layout = g.layout_bipartite()
layout[9] = (2, -1)
layout[10] = (2, 2)
fig, ax = plt.subplots()
ig.plot(
g,
target=ax,
layout=layout,
vertex_size=30,
vertex_label=range(g.vcount()),
vertex_color=["lightblue" if i < 9 else "orange" for i in range(11)],
edge_width=[1.0 + flow.flow[i] for i in range(g.ecount())]
)
plt.show()
|