File: bipartite_matching_maxflow.py

package info (click to toggle)
python-igraph 0.11.9%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 3,480 kB
  • sloc: ansic: 24,611; python: 21,748; sh: 111; makefile: 35; sed: 2
file content (67 lines) | stat: -rw-r--r-- 2,154 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
.. _tutorials-bipartite-matching-maxflow:

==========================================
Maximum Bipartite Matching by Maximum Flow
==========================================

This example presents how to visualise bipartite matching using maximum flow (see :meth:`igraph.Graph.maxflow`).

.. note::  :meth:`igraph.Graph.maximum_bipartite_matching` is usually a better way to find the maximum bipartite matching. For a demonstration on how to use that method instead, check out :ref:`tutorials-bipartite-matching`.
"""
import igraph as ig
import matplotlib.pyplot as plt

# %%
# We start by creating the bipartite directed graph.
g = ig.Graph(
    9,
    [(0, 4), (0, 5), (1, 4), (1, 6), (1, 7), (2, 5), (2, 7), (2, 8), (3, 6), (3, 7)],
    directed=True
)

# %%
# We assign:
#  - nodes 0-3 to one side
#  - nodes 4-8 to the other side
g.vs[range(4)]["type"] = True
g.vs[range(4, 9)]["type"] = False

# %%
# Then we add a source (vertex 9) and a sink (vertex 10)
g.add_vertices(2)
g.add_edges([(9, 0), (9, 1), (9, 2), (9, 3)])  # connect source to one side
g.add_edges([(4, 10), (5, 10), (6, 10), (7, 10), (8, 10)])  # ... and sinks to the other

flow = g.maxflow(9, 10)
print("Size of maximum matching (maxflow) is:", flow.value)

# %%
# Let's compare the output against :meth:`igraph.Graph.maximum_bipartite_matching`:

# delete the source and sink, which are unneeded for this function.
g2 = g.copy()
g2.delete_vertices([9, 10])
matching = g2.maximum_bipartite_matching()
matching_size = sum(1 for i in range(4) if matching.is_matched(i))
print("Size of maximum matching (maximum_bipartite_matching) is:", matching_size)

# %%
# Last, we can display the original flow graph nicely with the matchings added.
# To achieve a pleasant visual effect, we set the positions of source and sink
# manually:
layout = g.layout_bipartite()
layout[9] = (2, -1)
layout[10] = (2, 2)

fig, ax = plt.subplots()
ig.plot(
    g,
    target=ax,
    layout=layout,
    vertex_size=30,
    vertex_label=range(g.vcount()),
    vertex_color=["lightblue" if i < 9 else "orange" for i in range(11)],
    edge_width=[1.0 + flow.flow[i] for i in range(g.ecount())]
)
plt.show()