1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
"""
.. _tutorials-cluster-graph:
===========================
Generating Cluster Graphs
===========================
This example shows how to find the communities in a graph, then contract each community into a single node using :class:`igraph.clustering.VertexClustering`. For this tutorial, we'll use the *Donald Knuth's Les Miserables Network*, which shows the coapperances of characters in the novel *Les Miserables*.
"""
import igraph as ig
import matplotlib.pyplot as plt
# %%
# We begin by load the graph from file. The file containing this network can be
# downloaded `here <https://www-personal.umich.edu/~mejn/netdata/>`_.
g = ig.load("./lesmis/lesmis.gml")
# %%
# Now that we have a graph in memory, we can generate communities using
# :meth:`igraph.Graph.community_edge_betweenness` to separate out vertices into
# clusters. (For a more focused tutorial on just visualising communities, check
# out :ref:`tutorials-visualize-communities`).
communities = g.community_edge_betweenness()
# %%
# For plots, it is convenient to convert the communities into a VertexClustering:
communities = communities.as_clustering()
# %%
# We can also easily print out who belongs to each community:
for i, community in enumerate(communities):
print(f"Community {i}:")
for v in community:
print(f"\t{g.vs[v]['label']}")
# %%
# Finally we can proceed to plotting the graph. In order to make each community
# stand out, we set "community colors" using an igraph palette:
num_communities = len(communities)
palette1 = ig.RainbowPalette(n=num_communities)
for i, community in enumerate(communities):
g.vs[community]["color"] = i
community_edges = g.es.select(_within=community)
community_edges["color"] = i
# %%
# We can use a dirty hack to move the labels below the vertices ;-)
g.vs["label"] = ["\n\n" + label for label in g.vs["label"]]
# %%
# Finally, we can plot the communities:
fig1, ax1 = plt.subplots()
ig.plot(
communities,
target=ax1,
mark_groups=True,
palette=palette1,
vertex_size=15,
edge_width=0.5,
)
fig1.set_size_inches(20, 20)
# %%
# Now let's try and contract the information down, using only a single vertex
# to represent each community. We start by defining x, y, and size attributes
# for each node in the original graph:
layout = g.layout_kamada_kawai()
g.vs["x"], g.vs["y"] = list(zip(*layout))
g.vs["size"] = 15
g.es["size"] = 15
# %%
# Then we can generate the cluster graph that compresses each community into a
# single, "composite" vertex using
# :meth:`igraph.VertexClustering.cluster_graph`:
cluster_graph = communities.cluster_graph(
combine_vertices={
"x": "mean",
"y": "mean",
"color": "first",
"size": "sum",
},
combine_edges={
"size": "sum",
},
)
# %%
# .. note::
#
# We took the mean of x and y values so that the nodes in the cluster
# graph are placed at the centroid of the original cluster.
#
# .. note::
#
# ``mean``, ``first``, and ``sum`` are all built-in collapsing functions,
# along with ``prod``, ``median``, ``max``, ``min``, ``last``, ``random``.
# You can also define your own custom collapsing functions, which take in a
# list and return a single element representing the combined attribute
# value. For more details on igraph contraction, see
# :meth:`igraph.GraphBase.contract_vertices`.
# %%
# Finally, we can assign colors to the clusters and plot the cluster graph,
# including a legend to make things clear:
palette2 = ig.GradientPalette("gainsboro", "black")
g.es["color"] = [palette2.get(int(i)) for i in ig.rescale(cluster_graph.es["size"], (0, 255), clamp=True)]
fig2, ax2 = plt.subplots()
ig.plot(
cluster_graph,
target=ax2,
palette=palette1,
# set a minimum size on vertex_size, otherwise vertices are too small
vertex_size=[max(20, size) for size in cluster_graph.vs["size"]],
edge_color=g.es["color"],
edge_width=0.8,
)
# Add a legend
legend_handles = []
for i in range(num_communities):
handle = ax2.scatter(
[], [],
s=100,
facecolor=palette1.get(i),
edgecolor="k",
label=i,
)
legend_handles.append(handle)
ax2.legend(
handles=legend_handles,
title='Community:',
bbox_to_anchor=(0, 1.0),
bbox_transform=ax2.transAxes,
)
fig2.set_size_inches(10, 10)
|