File: visual_style.py

package info (click to toggle)
python-igraph 0.11.9%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 3,480 kB
  • sloc: ansic: 24,611; python: 21,748; sh: 111; makefile: 35; sed: 2
file content (90 lines) | stat: -rw-r--r-- 2,628 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
.. _tutorials-visual-style:

Visual styling
===========================

This example shows how to change the visual style of network plots.
"""
import igraph as ig
import matplotlib.pyplot as plt
import random

# %%
# To configure the visual style of a plot, we can create a dictionary with the
# various setting we want to customize:
visual_style = {
    "edge_width": 0.3,
    "vertex_size": 15,
    "palette": "heat",
    "layout": "fruchterman_reingold"
}

# %%
# Let's see it in action! First, we generate four random graphs:
random.seed(1)
gs = [ig.Graph.Barabasi(n=30, m=1) for i in range(4)]

# %%
# Then, we calculate a color colors between 0-255 for all nodes, e.g. using
# betweenness just as an example:
betweenness = [g.betweenness() for g in gs]
colors = [[int(i * 255 / max(btw)) for i in btw] for btw in betweenness]

# %%
# Finally, we can plot the graphs using the same visual style for all graphs:
fig, axs = plt.subplots(2, 2)
axs = axs.ravel()
for g, color, ax in zip(gs, colors, axs):
    ig.plot(g, target=ax, vertex_color=color, **visual_style)
plt.show()


# %%
# .. note::
#    If you would like to set global defaults, for example, always using the
#    Matplotlib plotting backend, or using a particular color palette by
#    default, you can use igraph's `configuration instance
#    :class:`igraph.configuration.Configuration`. A quick example on how to use
#    it can be found here: :ref:`tutorials-configuration`.

# %%
# In the matplotlib backend, igraph creates a special container
# :class:`igraph.drawing.matplotlib.graph.GraphArtist` which is a matplotlib Artist
# and the first child of the target Axes. That object can be used to customize
# the plot appearance after the initial drawing, e.g.:
g = ig.Graph.Barabasi(n=30, m=1)
fig, ax = plt.subplots()
ig.plot(g, target=ax)
artist = ax.get_children()[0]
# Option 1:
artist.set(vertex_color="blue")
# Option 2:
artist.set_vertex_color("blue")
plt.show()

# %%
# .. note::
#    The :meth:`igraph.drawing.matplotlib.graph.GraphArtist.set` method can
#    be used to change multiple properties at once and is generally more
#    efficient than multiple calls to specific ``artist.set_...`` methods.

# %%
# In the matplotlib backend, you can also specify the size of self-loops,
# either as a number or a sequence of numbers, e.g.:
g = ig.Graph(n=5)
g.add_edge(2, 3)
g.add_edge(0, 0)
g.add_edge(1, 1)
fig, ax = plt.subplots()
ig.plot(
    g,
    target=ax,
    vertex_size=20,
    edge_loop_size=[
        0,  # ignored, the first edge is not a loop
        30,  # loop for vertex 0
        80,  # loop for vertex 1
    ],
)
plt.show()