1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
"""
Drawers for various edge styles in graph plots.
"""
__all__ = ["AbstractEdgeDrawer", "AlphaVaryingEdgeDrawer",
"ArrowEdgeDrawer", "DarkToLightEdgeDrawer",
"LightToDarkEdgeDrawer", "TaperedEdgeDrawer"]
__license__ = "GPL"
from igraph.drawing.colors import clamp
from igraph.drawing.metamagic import AttributeCollectorBase
from igraph.drawing.text import TextAlignment
from igraph.drawing.utils import find_cairo
from math import atan2, cos, pi, sin, sqrt
cairo = find_cairo()
class AbstractEdgeDrawer(object):
"""Abstract edge drawer object from which all concrete edge drawer
implementations are derived."""
def __init__(self, context, palette):
"""Constructs the edge drawer.
@param context: a Cairo context on which the edges will be drawn.
@param palette: the palette that can be used to map integer
color indices to colors when drawing edges
"""
self.context = context
self.palette = palette
self.VisualEdgeBuilder = self._construct_visual_edge_builder()
@staticmethod
def _curvature_to_float(value):
"""Converts values given to the 'curved' edge style argument
in plotting calls to floating point values."""
if value is None or value is False:
return 0.0
if value is True:
return 0.5
return float(value)
def _construct_visual_edge_builder(self):
"""Construct the visual edge builder that will collect the visual
attributes of an edge when it is being drawn."""
class VisualEdgeBuilder(AttributeCollectorBase):
"""Builder that collects some visual properties of an edge for
drawing"""
_kwds_prefix = "edge_"
arrow_size = 1.0
arrow_width = 1.0
color = ("#444", self.palette.get)
curved = (0.0, self._curvature_to_float)
label = None
label_color = ("black", self.palette.get)
label_size = 12.0
width = 1.0
return VisualEdgeBuilder
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
"""Draws a directed edge.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
"""
raise NotImplementedError()
def draw_loop_edge(self, edge, vertex):
"""Draws a loop edge.
The default implementation draws a small circle.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param vertex: the vertex to which the edge is attached. Visual
properties are given again as attributes.
"""
ctx = self.context
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
radius = vertex.size * 1.5
center_x = vertex.position[0] + cos(pi/4) * radius / 2.
center_y = vertex.position[1] - sin(pi/4) * radius / 2.
ctx.arc(center_x, center_y, radius/2., 0, pi * 2)
ctx.stroke()
def draw_undirected_edge(self, edge, src_vertex, dest_vertex):
"""Draws an undirected edge.
The default implementation of this method draws undirected edges
as straight lines. Loop edges are drawn as small circles.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
"""
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
ctx = self.context
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
ctx.move_to(*src_vertex.position)
if edge.curved:
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position
aux1 = (2*x1+x2) / 3.0 - edge.curved * 0.5 * (y2-y1), \
(2*y1+y2) / 3.0 + edge.curved * 0.5 * (x2-x1)
aux2 = (x1+2*x2) / 3.0 - edge.curved * 0.5 * (y2-y1), \
(y1+2*y2) / 3.0 + edge.curved * 0.5 * (x2-x1)
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], *dest_vertex.position)
else:
ctx.line_to(*dest_vertex.position)
ctx.stroke()
def get_label_position(self, edge, src_vertex, dest_vertex):
"""Returns the position where the label of an edge should be drawn. The
default implementation returns the midpoint of the edge and an alignment
that tries to avoid overlapping the label with the edge.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
@return: a tuple containing two more tuples: the desired position of the
label and the desired alignment of the label, where the position is
given as C{(x, y)} and the alignment is given as C{(horizontal, vertical)}.
Members of the alignment tuple are taken from constants in the
L{TextAlignment} class.
"""
# Determine the angle of the line
dx = dest_vertex.position[0] - src_vertex.position[0]
dy = dest_vertex.position[1] - src_vertex.position[1]
if dx != 0 or dy != 0:
# Note that we use -dy because the Y axis points downwards
angle = atan2(-dy, dx) % (2*pi)
else:
angle = None
# Determine the midpoint
pos = ((src_vertex.position[0] + dest_vertex.position[0]) / 2., \
(src_vertex.position[1] + dest_vertex.position[1]) / 2)
# Determine the alignment based on the angle
pi4 = pi / 4
if angle is None:
halign, valign = TextAlignment.CENTER, TextAlignment.CENTER
else:
index = int((angle / pi4) % 8)
halign = [TextAlignment.RIGHT, TextAlignment.RIGHT,
TextAlignment.RIGHT, TextAlignment.RIGHT,
TextAlignment.LEFT, TextAlignment.LEFT,
TextAlignment.LEFT, TextAlignment.LEFT][index]
valign = [TextAlignment.BOTTOM, TextAlignment.CENTER,
TextAlignment.CENTER, TextAlignment.TOP,
TextAlignment.TOP, TextAlignment.CENTER,
TextAlignment.CENTER, TextAlignment.BOTTOM][index]
return pos, (halign, valign)
class ArrowEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges as arrows.
"""
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
ctx = self.context
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position
(x_src, y_src), (x_dest, y_dest) = src_vertex.position, dest_vertex.position
def bezier_cubic(x0,y0, x1,y1, x2,y2, x3,y3, t):
""" Computes the Bezier curve from point (x0,y0) to (x3,y3)
via control points (x1,y1) and (x2,y2) with parameter t.
"""
xt = (1.0 - t) ** 3 * x0 + 3. *t * (1.0 - t) ** 2 * x1 + 3. * t**2 * (1. - t) * x2 + t**3 * x3
yt = (1.0 - t) ** 3 * y0 + 3. *t * (1.0 - t) ** 2 * y1 + 3. * t**2 * (1. - t) * y2 + t**3 * y3
return xt,yt
def euclidean_distance(x1,y1,x2,y2):
""" Computes the Euclidean distance between points (x1,y1) and (x2,y2).
"""
return sqrt( (1.0*x1-x2) **2 + (1.0*y1-y2) **2 )
def intersect_bezier_circle(x0,y0, x1,y1, x2,y2, x3,y3, radius):
""" Binary search solver for finding the intersection of a Bezier curve
and a circle centered at the curve's end point.
Returns the x,y of the intersection point.
TODO: implement safeguard to ensure convergence in ALL possible cases.
"""
precision = radius / 20.0
source_target_distance = euclidean_distance(x0,y0,x3,y3)
radius = float(radius)
t0 = 1.0
t1 = 1.0 - radius / source_target_distance
xt0, yt0 = x3, y3
xt1, yt1 = bezier_cubic(x0,y0, x1,y1, x2,y2, x3,y3, t1)
distance_t0 = 0
distance_t1 = euclidean_distance(x3,y3, xt1,yt1)
counter = 0
while abs(distance_t1 - radius) > precision:
if ((distance_t1-radius) > 0) != ((distance_t0-radius) > 0):
t_new = (t0 + t1)/2.0
else:
if (abs(distance_t1 - radius) < abs(distance_t0 - radius)):
# If t1 gets us closer to the circumference step in the same direction
t_new = t1 + (t1 - t0)/ 2.0
else:
t_new = t1 - (t1 - t0)
t_new = 1 if t_new > 1 else (0 if t_new < 0 else t_new)
t0,t1 = t1,t_new
distance_t0 = distance_t1
xt1, yt1 = bezier_cubic(x0,y0, x1,y1, x2,y2, x3,y3, t1)
distance_t1 = euclidean_distance(x3,y3, xt1,yt1)
counter += 1
return bezier_cubic(x0,y0, x1,y1, x2,y2, x3,y3, t1)
# Draw the edge
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
ctx.move_to(x1, y1)
if edge.curved:
# Calculate the curve
aux1 = (2*x1+x2) / 3.0 - edge.curved * 0.5 * (y2-y1), \
(2*y1+y2) / 3.0 + edge.curved * 0.5 * (x2-x1)
aux2 = (x1+2*x2) / 3.0 - edge.curved * 0.5 * (y2-y1), \
(y1+2*y2) / 3.0 + edge.curved * 0.5 * (x2-x1)
# Coordinates of the control points of the Bezier curve
xc1, yc1 = aux1
xc2, yc2 = aux2
# Determine where the edge intersects the circumference of the
# vertex shape: Tip of the arrow
x2, y2 = intersect_bezier_circle(x_src,y_src, xc1,yc1, xc2,yc2, x_dest,y_dest, dest_vertex.size/2.0)
# Calculate the arrow head coordinates
angle = atan2(y_dest - y2, x_dest - x2) # navid
arrow_size = 15. * edge.arrow_size
arrow_width = 10. / edge.arrow_width
aux_points = [
(x2 - arrow_size * cos(angle - pi/arrow_width),
y2 - arrow_size * sin(angle - pi/arrow_width)),
(x2 - arrow_size * cos(angle + pi/arrow_width),
y2 - arrow_size * sin(angle + pi/arrow_width)),
]
# Midpoint of the base of the arrow triangle
x_arrow_mid , y_arrow_mid = (aux_points [0][0] + aux_points [1][0]) / 2.0, (aux_points [0][1] + aux_points [1][1]) / 2.0
# Vector representing the base of the arrow triangle
x_arrow_base_vec, y_arrow_base_vec = (aux_points [0][0] - aux_points [1][0]) , (aux_points [0][1] - aux_points [1][1])
# Recalculate the curve such that it lands on the base of the arrow triangle
aux1 = (2*x_src+x_arrow_mid) / 3.0 - edge.curved * 0.5 * (y_arrow_mid-y_src), \
(2*y_src+y_arrow_mid) / 3.0 + edge.curved * 0.5 * (x_arrow_mid-x_src)
aux2 = (x_src+2*x_arrow_mid) / 3.0 - edge.curved * 0.5 * (y_arrow_mid-y_src), \
(y_src+2*y_arrow_mid) / 3.0 + edge.curved * 0.5 * (x_arrow_mid-x_src)
# Offset the second control point (aux2) such that it falls precisely on the normal to the arrow base vector
# Strictly speaking, offset_length is the offset length divided by the length of the arrow base vector.
offset_length = (x_arrow_mid - aux2[0]) * x_arrow_base_vec + (y_arrow_mid - aux2[1]) * y_arrow_base_vec
offset_length /= euclidean_distance(0,0, x_arrow_base_vec, y_arrow_base_vec) ** 2
aux2 = aux2[0] + x_arrow_base_vec * offset_length, \
aux2[1] + y_arrow_base_vec * offset_length
# Draw tthe curve from the first vertex to the midpoint of the base of the arrow head
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], x_arrow_mid, y_arrow_mid)
else:
# Determine where the edge intersects the circumference of the
# vertex shape.
x2, y2 = dest_vertex.shape.intersection_point(
x2, y2, x1, y1, dest_vertex.size)
# Draw the arrowhead
angle = atan2(y_dest - y2, x_dest - x2)
arrow_size = 15. * edge.arrow_size
arrow_width = 10. / edge.arrow_width
aux_points = [
(x2 - arrow_size * cos(angle - pi/arrow_width),
y2 - arrow_size * sin(angle - pi/arrow_width)),
(x2 - arrow_size * cos(angle + pi/arrow_width),
y2 - arrow_size * sin(angle + pi/arrow_width)),
]
# Midpoint of the base of the arrow triangle
x_arrow_mid , y_arrow_mid = (aux_points [0][0] + aux_points [1][0]) / 2.0, (aux_points [0][1] + aux_points [1][1]) / 2.0
# Draw the line
ctx.line_to(x_arrow_mid, y_arrow_mid)
# Draw the edge
ctx.stroke()
# Draw the arrow head
ctx.move_to(x2, y2)
ctx.line_to(*aux_points[0])
ctx.line_to(*aux_points[1])
ctx.line_to(x2, y2)
ctx.fill()
class TaperedEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges as tapered lines that are
wider at the source and narrow at the destination.
"""
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
# Determine where the edge intersects the circumference of the
# destination vertex.
src_pos, dest_pos = src_vertex.position, dest_vertex.position
dest_pos = dest_vertex.shape.intersection_point(
dest_pos[0], dest_pos[1], src_pos[0], src_pos[1],
dest_vertex.size
)
ctx = self.context
# Draw the edge
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
angle = atan2(dest_pos[1]-src_pos[1], dest_pos[0]-src_pos[0])
arrow_size = src_vertex.size / 4.
aux_points = [
(src_pos[0] + arrow_size * cos(angle + pi/2),
src_pos[1] + arrow_size * sin(angle + pi/2)),
(src_pos[0] + arrow_size * cos(angle - pi/2),
src_pos[1] + arrow_size * sin(angle - pi/2))
]
ctx.move_to(*dest_pos)
ctx.line_to(*aux_points[0])
ctx.line_to(*aux_points[1])
ctx.line_to(*dest_pos)
ctx.fill()
class AlphaVaryingEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by varying the alpha value
of the specified edge color between the source and the destination.
"""
def __init__(self, context, alpha_at_src, alpha_at_dest):
super(AlphaVaryingEdgeDrawer, self).__init__(context)
self.alpha_at_src = (clamp(float(alpha_at_src), 0., 1.), )
self.alpha_at_dest = (clamp(float(alpha_at_dest), 0., 1.), )
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
src_pos, dest_pos = src_vertex.position, dest_vertex.position
ctx = self.context
# Set up the gradient
lg = cairo.LinearGradient(src_pos[0], src_pos[1], dest_pos[0], dest_pos[1])
edge_color = edge.color[:3] + self.alpha_at_src
edge_color_end = edge_color[:3] + self.alpha_at_dest
lg.add_color_stop_rgba(0, *edge_color)
lg.add_color_stop_rgba(1, *edge_color_end)
# Draw the edge
ctx.set_source(lg)
ctx.set_line_width(edge.width)
ctx.move_to(*src_pos)
ctx.line_to(*dest_pos)
ctx.stroke()
class LightToDarkEdgeDrawer(AlphaVaryingEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by using an alpha value of
zero (total transparency) at the source and an alpha value of
one (full opacity) at the destination. The alpha value is
interpolated in-between.
"""
def __init__(self, context):
super(LightToDarkEdgeDrawer, self).__init__(context, 0.0, 1.0)
class DarkToLightEdgeDrawer(AlphaVaryingEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by using an alpha value of
one (full opacity) at the source and an alpha value of zero
(total transparency) at the destination. The alpha value is
interpolated in-between.
"""
def __init__(self, context):
super(DarkToLightEdgeDrawer, self).__init__(context, 1.0, 0.0)
|