1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# vim:ts=4 sw=4 sts=4:
import unittest
from igraph import *
from igraph.test.utils import skipIf
try:
import numpy as np
except ImportError:
np = None
class VertexTests(unittest.TestCase):
def setUp(self):
self.g = Graph.Full(10)
def testHash(self):
data = {}
n = self.g.vcount()
for i in xrange(n):
code1 = hash(self.g.vs[i])
code2 = hash(self.g.vs[i])
self.assertEqual(code1, code2)
data[self.g.vs[i]] = i
for i in xrange(n):
self.assertEqual(i, data[self.g.vs[i]])
def testRichCompare(self):
g2 = Graph.Full(10)
for i in xrange(self.g.vcount()):
for j in xrange(self.g.vcount()):
self.assertEqual(i == j, self.g.vs[i] == self.g.vs[j])
self.assertEqual(i != j, self.g.vs[i] != self.g.vs[j])
self.assertEqual(i < j, self.g.vs[i] < self.g.vs[j])
self.assertEqual(i > j, self.g.vs[i] > self.g.vs[j])
self.assertEqual(i <= j, self.g.vs[i] <= self.g.vs[j])
self.assertEqual(i >= j, self.g.vs[i] >= self.g.vs[j])
self.assertFalse(self.g.vs[i] == g2.vs[j])
self.assertFalse(self.g.vs[i] != g2.vs[j])
self.assertFalse(self.g.vs[i] < g2.vs[j])
self.assertFalse(self.g.vs[i] > g2.vs[j])
self.assertFalse(self.g.vs[i] <= g2.vs[j])
self.assertFalse(self.g.vs[i] >= g2.vs[j])
self.assertFalse(self.g.es[i] == self.g.vs[j])
def testUpdateAttributes(self):
v = self.g.vs[0]
v.update_attributes(a=2)
self.assertEqual(v["a"], 2)
v.update_attributes([("a", 3), ("b", 4)], c=5, d=6)
self.assertEqual(v.attributes(), dict(a=3, b=4, c=5, d=6))
v.update_attributes(dict(b=44, c=55))
self.assertEqual(v.attributes(), dict(a=3, b=44, c=55, d=6))
def testPhantomVertex(self):
v = self.g.vs[9]
v.delete()
# v is now a phantom vertex; try to freak igraph out now :)
self.assertRaises(ValueError, v.update_attributes, a=2)
self.assertRaises(ValueError, v.__getitem__, "a")
self.assertRaises(ValueError, v.__setitem__, "a", 4)
self.assertRaises(ValueError, v.__delitem__, "a")
self.assertRaises(ValueError, v.attributes)
def testProxyMethods(self):
# We only test with connected graphs because disconnected graphs might
# print a warning when shortest_paths() is invoked on them and we want
# to avoid that in the test output.
while True:
g = Graph.GRG(10, 0.6)
if g.is_connected():
break
v = g.vs[0]
# - neighbors(), predecessors() and succesors() are ignored because they
# return vertex lists while the methods in Graph return vertex index
# lists.
# - pagerank() and personalized_pagerank() are ignored because of numerical
# inaccuracies
# - delete() is ignored because it mutates the graph
ignore = "neighbors predecessors successors pagerank personalized_pagerank"\
" delete"
ignore = set(ignore.split())
# Methods not listed here are expected to return an int or a float
return_types = {
"get_shortest_paths": list,
"shortest_paths": list
}
for name in Vertex.__dict__:
if name in ignore:
continue
func = getattr(v, name)
docstr = func.__doc__
if not docstr.startswith("Proxy method"):
continue
result = func()
self.assertEqual(getattr(g, name)(v.index), result,
msg=("Vertex.%s proxy method misbehaved" % name))
return_type = return_types.get(name, (int, float))
self.assertTrue(isinstance(result, return_type),
msg=("Vertex.%s proxy method did not return %s" % (name, return_type))
)
class VertexSeqTests(unittest.TestCase):
def setUp(self):
self.g = Graph.Full(10)
self.g.vs["test"] = range(10)
self.g.vs["name"] = list("ABCDEFGHIJ")
def testCreation(self):
self.assertTrue(len(VertexSeq(self.g)) == 10)
self.assertTrue(len(VertexSeq(self.g, 2)) == 1)
self.assertTrue(len(VertexSeq(self.g, [1,2,3])) == 3)
self.assertTrue(VertexSeq(self.g, [1,2,3]).indices == [1,2,3])
self.assertRaises(ValueError, VertexSeq, self.g, 12)
self.assertRaises(ValueError, VertexSeq, self.g, [12])
self.assertTrue(self.g.vs.graph == self.g)
def testIndexing(self):
for i in xrange(self.g.vcount()):
self.assertEqual(i, self.g.vs[i].index)
self.assertRaises(IndexError, self.g.vs.__getitem__, -1)
self.assertRaises(TypeError, self.g.vs.__getitem__, 1.5)
@skipIf(np is None, "test case depends on NumPy")
def testNumPyIndexing(self):
if np is None:
return
for i in xrange(self.g.vcount()):
arr = np.array([i])
self.assertEqual(i, self.g.vs[arr[0]].index)
arr = np.array([-1])
self.assertRaises(IndexError, self.g.vs.__getitem__, arr[0])
arr = np.array([1.5])
self.assertRaises(TypeError, self.g.vs.__getitem__, arr[0])
def testPartialAttributeAssignment(self):
only_even = self.g.vs.select(lambda v: (v.index % 2 == 0))
only_even["test"] = [0]*len(only_even)
self.assertTrue(self.g.vs["test"] == [0,1,0,3,0,5,0,7,0,9])
only_even["test2"] = range(5)
self.assertTrue(self.g.vs["test2"] == [0,None,1,None,2,None,3,None,4,None])
def testSequenceReusing(self):
if "test" in self.g.vertex_attributes():
del self.g.vs["test"]
self.g.vs["test"] = ["A", "B", "C"]
self.assertTrue(self.g.vs["test"] == ["A", "B", "C", "A", "B", "C", "A", "B", "C", "A"])
self.g.vs["test"] = "ABC"
self.assertTrue(self.g.vs["test"] == ["ABC"] * 10)
only_even = self.g.vs.select(lambda v: (v.index % 2 == 0))
only_even["test"] = ["D", "E"]
self.assertTrue(self.g.vs["test"] == ["D", "ABC", "E", "ABC", "D", "ABC", "E", "ABC", "D", "ABC"])
del self.g.vs["test"]
only_even["test"] = ["D", "E"]
self.assertTrue(self.g.vs["test"] == ["D", None, "E", None, "D", None, "E", None, "D", None])
def testAllSequence(self):
self.assertTrue(len(self.g.vs) == 10)
self.assertTrue(self.g.vs["test"] == range(10))
def testEmptySequence(self):
empty_vs = self.g.vs.select(None)
self.assertTrue(len(empty_vs) == 0)
self.assertRaises(IndexError, empty_vs.__getitem__, 0)
self.assertRaises(KeyError, empty_vs.__getitem__, "nonexistent")
self.assertTrue(empty_vs["test"] == [])
empty_vs = self.g.vs[[]]
self.assertTrue(len(empty_vs) == 0)
empty_vs = self.g.vs[()]
self.assertTrue(len(empty_vs) == 0)
def testCallableFilteringFind(self):
vertex = self.g.vs.find(lambda v: (v.index % 2 == 1))
self.assertTrue(vertex.index == 1)
self.assertRaises(IndexError, self.g.vs.find, lambda v: (v.index % 2 == 3))
def testCallableFilteringSelect(self):
only_even = self.g.vs.select(lambda v: (v.index % 2 == 0))
self.assertTrue(len(only_even) == 5)
self.assertRaises(KeyError, only_even.__getitem__, "nonexistent")
self.assertTrue(only_even["test"] == [0, 2, 4, 6, 8])
def testChainedCallableFilteringSelect(self):
only_div_six = self.g.vs.select(lambda v: (v.index % 2 == 0),
lambda v: (v.index % 3 == 0))
self.assertTrue(len(only_div_six) == 2)
self.assertTrue(only_div_six["test"] == [0, 6])
only_div_six = self.g.vs.select(lambda v: (v.index % 2 == 0)).select(\
lambda v: (v.index % 3 == 0))
self.assertTrue(len(only_div_six) == 2)
self.assertTrue(only_div_six["test"] == [0, 6])
def testIntegerFilteringFind(self):
self.assertEqual(self.g.vs.find(3).index, 3)
self.assertEqual(self.g.vs.select(2,3,4,2).find(3).index, 2)
self.assertRaises(IndexError, self.g.vs.find, 17)
def testIntegerFilteringSelect(self):
subset = self.g.vs.select(2,3,4,2)
self.assertEqual(len(subset), 4)
self.assertEqual(subset["test"], [2,3,4,2])
self.assertRaises(TypeError, self.g.vs.select, 2, 3, 4, 2, None)
subset = self.g.vs[2,3,4,2]
self.assertTrue(len(subset) == 4)
self.assertTrue(subset["test"] == [2,3,4,2])
def testStringFilteringFind(self):
self.assertEqual(self.g.vs.find("D").index, 3)
self.assertEqual(self.g.vs.select(2,3,4,2).find("C").index, 2)
self.assertRaises(ValueError, self.g.vs.select(2,3,4,2).find, "F")
self.assertRaises(ValueError, self.g.vs.find, "NoSuchName")
def testIterableFilteringSelect(self):
subset = self.g.vs.select(xrange(5,8))
self.assertTrue(len(subset) == 3)
self.assertTrue(subset["test"] == [5,6,7])
def testSliceFilteringSelect(self):
subset = self.g.vs.select(slice(5, 8))
self.assertTrue(len(subset) == 3)
self.assertTrue(subset["test"] == [5,6,7])
subset = self.g.vs[5:16:2]
self.assertTrue(len(subset) == 3)
self.assertTrue(subset["test"] == [5,7,9])
def testKeywordFilteringSelect(self):
g = Graph.Barabasi(10000)
g.vs["degree"] = g.degree()
g.vs["parity"] = [i % 2 for i in xrange(g.vcount())]
l = len(g.vs(degree_gt=30))
self.assertTrue(l < 1000)
self.assertTrue(len(g.vs(degree_gt=30, parity=0)) <= 500)
del g.vs["degree"]
self.assertTrue(len(g.vs(_degree_gt=30)) == l)
def testIndexOutOfBoundsSelect(self):
g = Graph.Full(3)
self.assertRaises(ValueError, g.vs.select, 4)
self.assertRaises(ValueError, g.vs.select, 4, 5)
self.assertRaises(ValueError, g.vs.select, (4, 5))
self.assertRaises(ValueError, g.vs.select, 2, -1)
self.assertRaises(ValueError, g.vs.select, (2, -1))
self.assertRaises(ValueError, g.vs.__getitem__, (0, 1000000))
def testGraphMethodProxying(self):
g = Graph.Barabasi(100)
vs = g.vs(1,3,5,7,9)
self.assertEqual(vs.degree(), g.degree(vs))
self.assertEqual(g.degree(vs), g.degree(vs.indices))
for v, d in zip(vs, vs.degree()):
self.assertEqual(v.degree(), d)
def suite():
vertex_suite = unittest.makeSuite(VertexTests)
vs_suite = unittest.makeSuite(VertexSeqTests)
return unittest.TestSuite([vertex_suite, vs_suite])
def test():
runner = unittest.TextTestRunner()
runner.run(suite())
if __name__ == "__main__":
test()
|