1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
import unittest
from igraph import *
from itertools import permutations
from random import shuffle
def node_compat(g1, g2, v1, v2):
"""Node compatibility function for isomorphism tests"""
return g1.vs[v1]["color"] == g2.vs[v2]["color"]
def edge_compat(g1, g2, e1, e2):
"""Edge compatibility function for isomorphism tests"""
return g1.es[e1]["color"] == g2.es[e2]["color"]
class IsomorphismTests(unittest.TestCase):
def testIsomorphic(self):
g1 = Graph(8, [(0, 4), (0, 5), (0, 6), \
(1, 4), (1, 5), (1, 7), \
(2, 4), (2, 6), (2, 7), \
(3, 5), (3, 6), (3, 7)])
g2 = Graph(8, [(0, 1), (0, 3), (0, 4), \
(2, 3), (2, 1), (2, 6), \
(5, 1), (5, 4), (5, 6), \
(7, 3), (7, 6), (7, 4)])
# Test the isomorphy of g1 and g2
self.assertTrue(g1.isomorphic(g2))
self.assertTrue(g2.isomorphic_vf2(g1, return_mapping_21=True) \
== (True, None, [0, 2, 5, 7, 1, 3, 4, 6]))
self.assertTrue(g2.isomorphic_bliss(g1, return_mapping_21=True, sh2="fl")\
== (True, None, [0, 2, 5, 7, 1, 3, 4, 6]))
self.assertRaises(ValueError, g2.isomorphic_bliss, g1, sh2="nonexistent")
# Test the automorphy of g1
self.assertTrue(g1.isomorphic())
self.assertTrue(g1.isomorphic_vf2(return_mapping_21=True) \
== (True, None, [0, 1, 2, 3, 4, 5, 6, 7]))
# Test VF2 with colors
self.assertTrue(g1.isomorphic_vf2(g2,
color1=[0,1,0,1,0,1,0,1],
color2=[0,0,1,1,0,0,1,1]))
g1.vs["color"] = [0,1,0,1,0,1,0,1]
g2.vs["color"] = [0,0,1,1,0,1,1,0]
self.assertTrue(not g1.isomorphic_vf2(g2, "color", "color"))
# Test VF2 with vertex and edge colors
self.assertTrue(g1.isomorphic_vf2(g2,
color1=[0,1,0,1,0,1,0,1],
color2=[0,0,1,1,0,0,1,1]))
g1.es["color"] = range(12)
g2.es["color"] = [0]*6 + [1]*6
self.assertTrue(not g1.isomorphic_vf2(g2, "color", "color", "color", "color"))
# Test VF2 with node compatibility function
g2.vs["color"] = [0,0,1,1,0,0,1,1]
self.assertTrue(g1.isomorphic_vf2(g2, node_compat_fn=node_compat))
g2.vs["color"] = [0,0,1,1,0,1,1,0]
self.assertTrue(not g1.isomorphic_vf2(g2, node_compat_fn=node_compat))
# Test VF2 with node edge compatibility function
g2.vs["color"] = [0,0,1,1,0,0,1,1]
g1.es["color"] = range(12)
g2.es["color"] = [0]*6 + [1]*6
self.assertTrue(not g1.isomorphic_vf2(g2, node_compat_fn=node_compat,
edge_compat_fn=edge_compat))
def testIsomorphicCallback(self):
maps = []
def callback(g1, g2, map1, map2):
maps.append(map1)
return True
# Test VF2 callback
g = Graph(6, [(0,1), (2,3), (4,5), (0,2), (2,4), (1,3), (3,5)])
g.isomorphic_vf2(g, callback=callback)
expected_maps = [[0,1,2,3,4,5], [1,0,3,2,5,4], [4,5,2,3,0,1], [5,4,3,2,1,0]]
self.assertTrue(sorted(maps) == expected_maps)
maps[:] = []
g3 = Graph.Full(4)
g3.vs["color"] = [0,1,1,0]
g3.isomorphic_vf2(callback=callback, color1="color", color2="color")
expected_maps = [[0,1,2,3], [0,2,1,3], [3,1,2,0], [3,2,1,0]]
self.assertTrue(sorted(maps) == expected_maps)
def testCountIsomorphisms(self):
g = Graph.Full(4)
self.assertTrue(g.count_automorphisms_vf2() == 24)
g = Graph(6, [(0,1), (2,3), (4,5), (0,2), (2,4), (1,3), (3,5)])
self.assertTrue(g.count_automorphisms_vf2() == 4)
# Some more tests with colors
g3 = Graph.Full(4)
g3.vs["color"] = [0,1,1,0]
self.assertTrue(g3.count_isomorphisms_vf2() == 24)
self.assertTrue(g3.count_isomorphisms_vf2(color1="color", color2="color") == 4)
self.assertTrue(g3.count_isomorphisms_vf2(color1=[0,1,2,0], color2=(0,1,2,0)) == 2)
self.assertTrue(g3.count_isomorphisms_vf2(edge_color1=[0,1,0,0,0,1],
edge_color2=[0,1,0,0,0,1]) == 2)
# Test VF2 with node/edge compatibility function
g3.vs["color"] = [0,1,1,0]
self.assertTrue(g3.count_isomorphisms_vf2(node_compat_fn=node_compat) == 4)
g3.vs["color"] = [0,1,2,0]
self.assertTrue(g3.count_isomorphisms_vf2(node_compat_fn=node_compat) == 2)
g3.es["color"] = [0,1,0,0,0,1]
self.assertTrue(g3.count_isomorphisms_vf2(edge_compat_fn=edge_compat) == 2)
def testGetIsomorphisms(self):
g = Graph(6, [(0,1), (2,3), (4,5), (0,2), (2,4), (1,3), (3,5)])
maps = g.get_automorphisms_vf2()
expected_maps = [[0,1,2,3,4,5], [1,0,3,2,5,4], [4,5,2,3,0,1], [5,4,3,2,1,0]]
self.assertTrue(maps == expected_maps)
g3 = Graph.Full(4)
g3.vs["color"] = [0,1,1,0]
expected_maps = [[0,1,2,3], [0,2,1,3], [3,1,2,0], [3,2,1,0]]
self.assertTrue(sorted(g3.get_automorphisms_vf2(color="color")) == expected_maps)
class SubisomorphismTests(unittest.TestCase):
def testSubisomorphicLAD(self):
g = Graph.Lattice([3,3], circular=False)
g2 = Graph([(0,1), (1,2), (1,3)])
g3 = g + [(0,4), (2,4), (6,4), (8,4), (3,1), (1,5), (5,7), (7,3)]
self.assertTrue(g.subisomorphic_lad(g2))
self.assertFalse(g2.subisomorphic_lad(g))
# Test 'induced'
self.assertFalse(g3.subisomorphic_lad(g, induced=True))
self.assertTrue(g3.subisomorphic_lad(g, induced=False))
self.assertTrue(g3.subisomorphic_lad(g))
self.assertTrue(g3.subisomorphic_lad(g2, induced=True))
self.assertTrue(g3.subisomorphic_lad(g2, induced=False))
self.assertTrue(g3.subisomorphic_lad(g2))
# Test with limited vertex matching
domains = [[4], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8]]
self.assertTrue(g.subisomorphic_lad(g2, domains=domains))
domains = [[], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8]]
self.assertTrue(not g.subisomorphic_lad(g2, domains=domains))
def testGetSubisomorphismsLAD(self):
g = Graph.Lattice([3,3], circular=False)
g2 = Graph([(0,1), (1,2), (2,3), (3,0)])
g3 = g + [(0,4), (2,4), (6,4), (8,4), (3,1), (1,5), (5,7), (7,3)]
all_subiso = "0143 0341 1034 1254 1430 1452 2145 2541 3014 3410 3476 \
3674 4103 4125 4301 4367 4521 4587 4763 4785 5214 5412 5478 5874 6347 \
6743 7436 7458 7634 7854 8547 8745"
all_subiso = sorted([int(x) for x in item] for item in all_subiso.split())
self.assertEqual(all_subiso, sorted(g.get_subisomorphisms_lad(g2)))
self.assertEqual([], sorted(g2.get_subisomorphisms_lad(g)))
# Test 'induced'
induced_subiso = "1375 1573 3751 5731 7513 7315 5137 3157"
induced_subiso = sorted([int(x) for x in item] for item in induced_subiso.split())
all_subiso_extra = sorted(all_subiso + induced_subiso)
self.assertEqual(induced_subiso,
sorted(g3.get_subisomorphisms_lad(g2, induced=True)))
self.assertEqual([], g3.get_subisomorphisms_lad(g, induced=True))
# Test with limited vertex matching
limited_subiso = [iso for iso in all_subiso if iso[0] == 4]
domains = [[4], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8]]
self.assertEqual(limited_subiso,
sorted(g.get_subisomorphisms_lad(g2, domains=domains)))
domains = [[], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8], [0,1,2,3,5,6,7,8]]
self.assertEqual([], sorted(g.get_subisomorphisms_lad(g2, domains=domains)))
def testSubisomorphicVF2(self):
g = Graph.Lattice([3,3], circular=False)
g2 = Graph([(0,1), (1,2), (1,3)])
self.assertTrue(g.subisomorphic_vf2(g2))
self.assertTrue(not g2.subisomorphic_vf2(g))
# Test with vertex colors
g.vs["color"] = [0,0,0,0,1,0,0,0,0]
g2.vs["color"] = [1,0,0,0]
self.assertTrue(g.subisomorphic_vf2(g2, node_compat_fn=node_compat))
g2.vs["color"] = [2,0,0,0]
self.assertTrue(not g.subisomorphic_vf2(g2, node_compat_fn=node_compat))
# Test with edge colors
g.es["color"] = [1] + [0]*(g.ecount()-1)
g2.es["color"] = [1] + [0]*(g2.ecount()-1)
self.assertTrue(g.subisomorphic_vf2(g2, edge_compat_fn=edge_compat))
g2.es[0]["color"] = [2]
self.assertTrue(not g.subisomorphic_vf2(g2, node_compat_fn=node_compat))
def testCountSubisomorphisms(self):
g = Graph.Lattice([3,3], circular=False)
g2 = Graph.Lattice([2,2], circular=False)
self.assertTrue(g.count_subisomorphisms_vf2(g2) == 4*4*2)
self.assertTrue(g2.count_subisomorphisms_vf2(g) == 0)
# Test with vertex colors
g.vs["color"] = [0,0,0,0,1,0,0,0,0]
g2.vs["color"] = [1,0,0,0]
self.assertTrue(g.count_subisomorphisms_vf2(g2, "color", "color") == 4*2)
self.assertTrue(g.count_subisomorphisms_vf2(g2, node_compat_fn=node_compat) == 4*2)
# Test with edge colors
g.es["color"] = [1] + [0]*(g.ecount()-1)
g2.es["color"] = [1] + [0]*(g2.ecount()-1)
self.assertTrue(g.count_subisomorphisms_vf2(g2, edge_color1="color", edge_color2="color") == 2)
self.assertTrue(g.count_subisomorphisms_vf2(g2, edge_compat_fn=edge_compat) == 2)
class PermutationTests(unittest.TestCase):
def testCanonicalPermutation(self):
# Simple case: two ring graphs
g1 = Graph(4, [(0, 1), (1, 2), (2, 3), (3, 0)])
g2 = Graph(4, [(0, 1), (1, 3), (3, 2), (2, 0)])
cp = g1.canonical_permutation()
g3 = g1.permute_vertices(cp)
cp = g2.canonical_permutation()
g4 = g2.permute_vertices(cp)
self.assertTrue(g3.vcount() == g4.vcount())
self.assertTrue(sorted(g3.get_edgelist()) == sorted(g4.get_edgelist()))
# More complicated one: small GRG, random permutation
g = Graph.GRG(10, 0.5)
perm = range(10)
shuffle(perm)
g2 = g.permute_vertices(perm)
g3 = g.permute_vertices(g.canonical_permutation())
g4 = g2.permute_vertices(g2.canonical_permutation())
self.assertTrue(g3.vcount() == g4.vcount())
self.assertTrue(sorted(g3.get_edgelist()) == sorted(g4.get_edgelist()))
def testPermuteVertices(self):
g1 = Graph(8, [(0, 4), (0, 5), (0, 6), \
(1, 4), (1, 5), (1, 7), \
(2, 4), (2, 6), (2, 7), \
(3, 5), (3, 6), (3, 7)])
g2 = Graph(8, [(0, 1), (0, 3), (0, 4), \
(2, 3), (2, 1), (2, 6), \
(5, 1), (5, 4), (5, 6), \
(7, 3), (7, 6), (7, 4)])
_, _, mapping = g1.isomorphic_vf2(g2, return_mapping_21=True)
g3 = g2.permute_vertices(mapping)
self.assertTrue(g3.vcount() == g2.vcount() and g3.ecount() == g2.ecount())
self.assertTrue(set(g3.get_edgelist()) == set(g1.get_edgelist()))
def suite():
isomorphism_suite = unittest.makeSuite(IsomorphismTests)
subisomorphism_suite = unittest.makeSuite(SubisomorphismTests)
permutation_suite = unittest.makeSuite(PermutationTests)
return unittest.TestSuite([isomorphism_suite, subisomorphism_suite, \
permutation_suite])
def test():
runner = unittest.TextTestRunner()
runner.run(suite())
if __name__ == "__main__":
test()
|