1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
"""Utility classes to handle BinaryCIF format.
See https://github.com/molstar/BinaryCIF for a description of the
BinaryCIF file format.
This module provides classes to read in and write out BinaryCIF files. It is
only concerned with handling syntactically correct BinaryCIF -
it does not know the set of tables or the mapping to ihm objects. For that,
see :mod:`ihm.reader`.
"""
import struct
import sys
import inspect
import ihm.format
import ihm
try:
from . import _format
except ImportError:
_format = None
# ByteArray types
_Int8 = 1
_Int16 = 2
_Int32 = 3
_Uint8 = 4
_Uint16 = 5
_Uint32 = 6
_Float32 = 32
_Float64 = 33
class _Decoder:
"""Base class for all decoders."""
_kind = None # Encoder kind (in BinaryCIF specification)
def __call__(self, enc, data):
"""Given encoding information `enc` and raw data `data`, return
decoded data. This can be a generator."""
pass
class _StringArrayDecoder(_Decoder):
"""Decode an array of strings stored as a concatenation of all unique
strings, an array of offsets describing substrings, and indices into
the offset array."""
_kind = 'StringArray'
def __call__(self, enc, data):
offsets = list(_decode(enc['offsets'], enc['offsetEncoding']))
indices = _decode(data, enc['dataEncoding'])
substr = []
string_data = enc['stringData']
for i in range(0, len(offsets) - 1):
substr.append(string_data[offsets[i]:offsets[i + 1]])
# todo: return a listlike class instead?
for i in indices:
yield None if i < 0 else substr[i]
class _ByteArrayDecoder(_Decoder):
"""Decode an array of numbers of specified type stored as raw bytes"""
_kind = 'ByteArray'
# Map integer/float type to struct format string
_struct_map = {
_Int8: 'b',
_Int16: 'h',
_Int32: 'i',
_Uint8: 'B',
_Uint16: 'H',
_Uint32: 'I',
_Float32: 'f',
_Float64: 'd',
}
def __call__(self, enc, data):
fmt = self._struct_map[enc['type']]
sz = len(data) // struct.calcsize(fmt)
# All data is encoded little-endian in bcif
return struct.unpack('<' + fmt * sz, data)
class _IntegerPackingDecoder(_Decoder):
"""Decode a (32-bit) integer array stored as 8- or 16-bit values."""
_kind = 'IntegerPacking'
def _unsigned_decode(self, enc, data):
limit = 0xFF if enc['byteCount'] == 1 else 0xFFFF
i = 0
while i < len(data):
value = 0
t = data[i]
while t == limit:
value += t
i += 1
t = data[i]
yield value + t
i += 1
def _signed_decode(self, enc, data):
upper_limit = 0x7F if enc['byteCount'] == 1 else 0x7FFF
lower_limit = -upper_limit - 1
i = 0
while i < len(data):
value = 0
t = data[i]
while t == upper_limit or t == lower_limit:
value += t
i += 1
t = data[i]
yield value + t
i += 1
def __call__(self, enc, data):
if enc['isUnsigned']:
return self._unsigned_decode(enc, data)
else:
return self._signed_decode(enc, data)
class _DeltaDecoder(_Decoder):
"""Decode an integer array stored as an array of consecutive
differences."""
_kind = 'Delta'
def __call__(self, enc, data):
val = enc['origin']
for d in data:
val += d
yield val
class _RunLengthDecoder(_Decoder):
"""Decode an integer array stored as pairs of (value, number of repeats)"""
_kind = 'RunLength'
def __call__(self, enc, data):
data = list(data)
for i in range(0, len(data), 2):
for j in range(data[i + 1]):
yield data[i]
class _FixedPointDecoder(_Decoder):
"""Decode a floating point array stored as integers multiplied by
a given factor."""
_kind = 'FixedPoint'
def __call__(self, enc, data):
factor = float(enc['factor'])
for d in data:
yield float(d) / factor
class _IntervalQuantizationDecoder(_Decoder):
"""Decode a floating point array stored as integers quantized within
a given interval into a number of discrete steps."""
_kind = 'IntervalQuantization'
def __call__(self, enc, data):
minval = float(enc['min'])
maxval = float(enc['max'])
numsteps = int(enc['numSteps'])
delta = (maxval - minval) / (numsteps - 1)
for d in data:
yield minval + delta * d
def _get_decoder_map():
m = {}
for d in [x[1] for x in inspect.getmembers(sys.modules[__name__],
inspect.isclass)
if issubclass(x[1], _Decoder)]:
m[d._kind] = d()
return m
# Mapping from BinaryCIF encoding names to _Decoder objects
_decoder_map = _get_decoder_map()
def _decode(data, encoding):
"""Decode the data using the list of encodings, and return it."""
for enc in reversed(encoding):
data = _decoder_map[enc['kind']](enc, data)
return data
class _BoolTypeHandler:
_bool_map = {'YES': True, 'NO': False}
def __init__(self, omitted):
self.omitted = omitted
def __call__(self, txt):
return self._bool_map.get(str(txt).upper(), self.omitted)
class BinaryCifReader(ihm.format._Reader):
"""Class to read a BinaryCIF file and extract some or all of its data.
Use :meth:`read_file` to actually read the file.
See :class:`ihm.format.CifReader` for a description of the parameters.
"""
def __init__(self, fh, category_handler, unknown_category_handler=None,
unknown_keyword_handler=None):
if _format is not None:
c_file = _format.ihm_file_new_from_python(fh, True)
self._c_format = _format.ihm_reader_new(c_file, True)
self.category_handler = category_handler
self.unknown_category_handler = unknown_category_handler
self.unknown_keyword_handler = unknown_keyword_handler
self.fh = fh
self._file_blocks = None
def __del__(self):
if hasattr(self, '_c_format'):
_format.ihm_reader_free(self._c_format)
def read_file(self):
"""Read the file and extract data.
If the C-accelerated _format module is available, then it is used
instead of the (much slower) Python reader.
:return: True iff more data blocks are available to be read.
"""
self._add_category_keys()
if hasattr(self, '_c_format'):
return self._read_file_c()
if self._file_blocks is None:
self._file_blocks = self._read_msgpack()
if len(self._file_blocks) > 0:
for category in self._file_blocks[0]['categories']:
cat_name = category['name'].lower()
handler = self.category_handler.get(cat_name, None)
if handler:
self._handle_category(handler, category, cat_name)
elif self.unknown_category_handler is not None:
self.unknown_category_handler(cat_name, 0)
del self._file_blocks[0]
return len(self._file_blocks) > 0
def _read_file_c(self):
"""Read the file using the C parser"""
_format.ihm_reader_remove_all_categories(self._c_format)
for category, handler in self.category_handler.items():
func = getattr(handler, '_add_c_handler', None) \
or _format.add_category_handler
func(self._c_format, category, handler._keys,
frozenset(handler._int_keys), frozenset(handler._float_keys),
frozenset(handler._bool_keys), handler)
if self.unknown_category_handler is not None:
_format.add_unknown_category_handler(self._c_format,
self.unknown_category_handler)
if self.unknown_keyword_handler is not None:
_format.add_unknown_keyword_handler(self._c_format,
self.unknown_keyword_handler)
ret_ok, more_data = _format.ihm_read_file(self._c_format)
return more_data
def _get_type_handler(self, category_handler, keyword):
"""Return a function that converts keyword string into desired type"""
if keyword in category_handler._int_keys:
return int
elif keyword in category_handler._bool_keys:
return _BoolTypeHandler(category_handler.omitted)
elif keyword in category_handler._float_keys:
return float
else:
return str
def _handle_category(self, handler, category, cat_name):
"""Extract data for the given category"""
num_cols = len(handler._keys)
type_handlers = [self._get_type_handler(handler, k)
for k in handler._keys]
# Read all data for the category;
# category_data[col][row]
category_data = [None] * num_cols
num_rows = 0
# Only read columns that match a handler key (case insensitive)
key_index = {}
for i, key in enumerate(handler._keys):
key_index[key] = i
column_indices = []
for c in category['columns']:
key_name = c['name'].lower()
ki = key_index.get(key_name, None)
if ki is not None:
column_indices.append(ki)
r = self._read_column(c, handler, type_handlers[ki])
num_rows = len(r)
category_data[ki] = r
elif self.unknown_keyword_handler is not None:
self.unknown_keyword_handler(cat_name, key_name, 0)
row_data = [handler.not_in_file] * num_cols
for row in range(num_rows):
# Only update data for columns that we read (others will
# remain None)
for i in column_indices:
row_data[i] = category_data[i][row]
handler(*row_data)
def _read_column(self, column, handler, type_handler):
"""Read a single category column data"""
data = _decode(column['data']['data'], column['data']['encoding'])
# Handle 'unknown' values (mask==2) or 'omitted' (mask==1)
if column['mask'] is not None:
mask = _decode(column['mask']['data'],
column['mask']['encoding'])
return [handler.unknown if m == 2 else handler.omitted if m == 1
else type_handler(d) for d, m in zip(data, mask)]
else:
return [type_handler(d) for d in data]
def _read_msgpack(self):
"""Read the msgpack data from the file and return data blocks"""
import msgpack
d = msgpack.unpack(self.fh, raw=False)
return d['dataBlocks']
class _CategoryWriter:
def __init__(self, writer, category):
self.writer = writer
self.category = category
self._data = {}
def write(self, **kwargs):
self._data.update(kwargs)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
for k in self._data:
self._data[k] = [self._data[k]]
self.writer._add_category(self.category, self._data)
class _LoopWriter:
def __init__(self, writer, category, keys):
self.writer = writer
self.category = category
self.keys = keys
# Remove characters that we can't use in Python identifiers
self.python_keys = [k.replace('[', '').replace(']', '') for k in keys]
self._values = []
for i in range(len(keys)):
self._values.append([])
def write(self, **kwargs):
for i, k in enumerate(self.python_keys):
val = kwargs.get(k, None)
self._values[i].append(val)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
data = {}
for key, value in zip(self.keys, self._values):
data[key] = value
self.writer._add_category(self.category, data)
class EncodeError(Exception):
"""Exception raised if input data cannot be encoded"""
pass
class _Encoder:
"""Base class for all encoders"""
_kind = None # Encoder kind (in BinaryCIF specification)
def __call__(self, data):
"""Given raw data `data`, return encoded data and a BinaryCIF
encoder information dict."""
pass
def _get_int_float_type(data):
"""Determine the int/float type of the given data"""
# If anything is float, treat everything as single-precision float
for d in data:
if isinstance(d, float):
return _Float32
# Otherwise, figure out the most appropriate int type
min_val = min(data)
max_val = max(data)
if min_val >= 0:
# Unsigned types
for typ, limit in [(_Uint8, 0xFF), (_Uint16, 0xFFFF),
(_Uint32, 0xFFFFFFFF)]:
if max_val <= limit:
return typ
else:
# Signed types
for typ, up_limit in [(_Int8, 0x7F), (_Int16, 0x7FFF),
(_Int32, 0x7FFFFFFF)]:
low_limit = -up_limit - 1
if min_val >= low_limit and max_val <= up_limit:
return typ
raise TypeError("Cannot represent data as BinaryCIF")
class _ByteArrayEncoder(_Encoder):
# Map integer/float type to struct format string
_struct_map = _ByteArrayDecoder._struct_map
def __call__(self, data):
ba_type = _get_int_float_type(data)
encdict = {'kind': 'ByteArray', 'type': ba_type}
fmt = self._struct_map[ba_type]
# All data is encoded little-endian in bcif
return struct.pack('<' + fmt * len(data), *data), encdict
class _DeltaEncoder(_Encoder):
"""Encode an integer array as an array of consecutive differences."""
def __call__(self, data):
# Don't try to compress small arrays; the overhead of the compression
# probably will exceed the space savings
if len(data) <= 40:
return data, None
data_type = _get_int_float_type(data)
encdict = {'kind': 'Delta', 'origin': data[0],
'srcType': data_type}
encdata = [0] + [data[i] - data[i - 1] for i in range(1, len(data))]
return encdata, encdict
class _RunLengthEncoder(_Encoder):
"""Encode an integer array as pairs of (value, number of repeats)"""
def __call__(self, data):
# Don't try to compress small arrays; the overhead of the compression
# probably will exceed the space savings
if len(data) <= 40:
return data, None
data_type = _get_int_float_type(data)
encdict = {'kind': 'RunLength',
'srcType': data_type, 'srcSize': len(data)}
encdata = []
val = None
for d in data:
if d != val:
if val is not None:
encdata.extend((val, repeat)) # noqa: F821
val = d
repeat = 1
else:
repeat += 1
encdata.extend((val, repeat))
# If we didn't save any space, return the original unchanged
if len(encdata) > len(data):
return data, None
else:
return encdata, encdict
def _encode(data, encoders):
"""Encode data using the given encoder objects. Return the encoded data
and a list of BinaryCIF encoding dicts."""
encdicts = []
for enc in encoders:
data, encdict = enc(data)
if encdict is not None:
encdicts.append(encdict)
return data, encdicts
class _MaskedEncoder:
"""Base class for all encoders that handle potentially masked data"""
def __call__(self, data, mask):
"""Given raw data `data`, and `mask`, return encoded data"""
pass
class _StringArrayMaskedEncoder(_MaskedEncoder):
_int_encoders = [_DeltaEncoder(), _RunLengthEncoder(),
_ByteArrayEncoder()]
def __call__(self, data, mask):
seen_substrs = {} # keys are substrings, values indices
sorted_substrs = []
indices = []
for i, reals in enumerate(data):
if mask is not None and mask[i]:
indices.append(-1)
else:
s = reals
# Map bool to YES/NO strings
if isinstance(s, bool):
s = ihm.format._Writer._boolmap[s]
else:
s = str(s) # coerce non-str data to str
if s not in seen_substrs:
seen_substrs[s] = len(seen_substrs)
sorted_substrs.append(s)
indices.append(seen_substrs[s])
offsets = [0]
total_len = 0
for s in sorted_substrs:
total_len += len(s)
offsets.append(total_len)
data_offsets, enc_offsets = _encode(offsets, self._int_encoders)
data_indices, enc_indices = _encode(indices, self._int_encoders)
enc_dict = {'kind': 'StringArray',
'dataEncoding': enc_indices,
'stringData': ''.join(sorted_substrs),
'offsetEncoding': enc_offsets,
'offsets': data_offsets}
return data_indices, [enc_dict]
class _IntArrayMaskedEncoder(_MaskedEncoder):
_encoders = [_DeltaEncoder(), _RunLengthEncoder(), _ByteArrayEncoder()]
def __call__(self, data, mask):
if mask:
masked_data = [-1 if m else d for m, d in zip(mask, data)]
else:
masked_data = data
encdata, encoders = _encode(masked_data, self._encoders)
return encdata, encoders
class _FloatArrayMaskedEncoder(_MaskedEncoder):
_encoders = [_ByteArrayEncoder()]
def __call__(self, data, mask):
if mask:
masked_data = [0. if m else d for m, d in zip(mask, data)]
else:
masked_data = data
encdata, encoders = _encode(masked_data, self._encoders)
return encdata, encoders
def _get_mask_and_type(data):
"""Detect missing/omitted values in `data` and determine the type of
the remaining values (str, int, float)"""
mask = None
seen_types = set()
for i, val in enumerate(data):
if val is None or val == ihm.unknown:
if mask is None:
mask = [0] * len(data)
mask[i] = 1 if val is None else 2
else:
seen_types.add(type(val))
# If a mix of types, coerce to that of the highest precedence
# (mixed int/float can be represented as float; mix int/float/str can
# be represented as str; bool is represented as str)
if not seen_types or bool in seen_types or str in seen_types:
return mask, str
elif float in seen_types:
return mask, float
elif int in seen_types:
return mask, int
for t in seen_types:
# Handle numpy float types like Python float
# todo: this is a hack
if 'numpy.float' in str(t):
return mask, float
raise ValueError("Cannot determine type of data %s" % data)
class BinaryCifWriter(ihm.format._Writer):
"""Write information to a BinaryCIF file. See :class:`ihm.format.CifWriter`
for more information. The constructor takes a single argument - a Python
filelike object, open for writing in binary mode."""
_mask_encoders = [_DeltaEncoder(), _RunLengthEncoder(),
_ByteArrayEncoder()]
def __init__(self, fh):
super().__init__(fh)
self._blocks = []
self._masked_encoder = {str: _StringArrayMaskedEncoder(),
int: _IntArrayMaskedEncoder(),
float: _FloatArrayMaskedEncoder()}
def category(self, category):
"""See :meth:`ihm.format.CifWriter.category`."""
return _CategoryWriter(self, category)
def loop(self, category, keys):
"""See :meth:`ihm.format.CifWriter.loop`."""
return _LoopWriter(self, category, keys)
def write_comment(self, comment):
"""See :meth:`ihm.format.CifWriter.write_comment`.
.. note::
BinaryCIF does not support comments, so this is a noop.
"""
pass
def _encode_data(self, data):
mask, typ = _get_mask_and_type(data)
enc = self._masked_encoder[typ]
encdata, encs = enc(data, mask)
if mask:
data_mask, enc_mask = _encode(mask, self._mask_encoders)
mask = {'data': data_mask, 'encoding': enc_mask}
return mask, encdata, encs
def _encode_column(self, name, data):
mask, encdata, encs = self._encode_data(data)
return {'name': name, 'mask': mask,
'data': {'data': encdata, 'encoding': encs}}
def start_block(self, name):
"""See :meth:`ihm.format.CifWriter.start_block`."""
block = {'header': name, 'categories': []}
self._categories = block['categories']
self._blocks.append(block)
def end_block(self):
# noop - end-of-block is handled by start_block() and flush()
pass
def _add_category(self, category, data):
row_count = 0
cols = []
for k, v in data.items():
row_count = len(v)
# Do nothing if the category has no data
if row_count == 0:
return
cols.append(self._encode_column(k, v))
self._categories.append({'name': category,
'columns': cols, 'rowCount': row_count})
def flush(self):
data = {'version': ihm.__version__,
'encoder': 'python-ihm library',
'dataBlocks': self._blocks}
self._write_msgpack(data)
def _write_msgpack(self, data):
"""Read the msgpack data from the file and return data blocks"""
import msgpack
msgpack.pack(data, self.fh, use_bin_type=True)
|