1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
import utils
import os
import sys
import unittest
import subprocess
TOPDIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
utils.set_search_paths(TOPDIR)
import ihm.reader
import ihm.util.make_mmcif # Script should also be importable
MAKE_MMCIF = os.path.join(TOPDIR, 'ihm', 'util', 'make_mmcif.py')
class Tests(unittest.TestCase):
def test_simple(self):
"""Simple test of make_mmcif utility script"""
incif = utils.get_input_file_name(TOPDIR, 'struct_only.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(s.title,
'Architecture of Pol II(G) and molecular mechanism '
'of transcription regulation by Gdown1')
os.unlink('output.cif')
def test_non_default_output(self):
"""Simple test of make_mmcif with non-default output name"""
incif = utils.get_input_file_name(TOPDIR, 'struct_only.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif,
'non-default-output.cif'])
with open('non-default-output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(s.title,
'Architecture of Pol II(G) and molecular mechanism '
'of transcription regulation by Gdown1')
os.unlink('non-default-output.cif')
def test_no_title(self):
"""Check that make_mmcif adds missing title"""
incif = utils.get_input_file_name(TOPDIR, 'no_title.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(s.title, 'Auto-generated system')
os.unlink('output.cif')
def test_bad_usage(self):
"""Bad usage of make_mmcif utility script"""
ret = subprocess.call([sys.executable, MAKE_MMCIF])
self.assertEqual(ret, 2)
def test_same_file(self):
"""Check that make_mmcif fails if input and output are the same"""
incif = utils.get_input_file_name(TOPDIR, 'struct_only.cif')
ret = subprocess.call([sys.executable, MAKE_MMCIF, incif, incif])
self.assertEqual(ret, 1)
def test_mini(self):
"""Check that make_mmcif works given only basic atom info"""
incif = utils.get_input_file_name(TOPDIR, 'mini.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(len(s.state_groups), 1)
self.assertEqual(len(s.state_groups[0]), 1)
self.assertEqual(len(s.state_groups[0][0]), 1)
self.assertEqual(len(s.state_groups[0][0][0]), 1)
m = s.state_groups[0][0][0][0]
self.assertEqual(m.protocol.name, 'modeling')
self.assertEqual(m.assembly.name, 'Complete assembly')
chain_a, chain_b, = m.representation
for chain in chain_a, chain_b:
self.assertIsInstance(chain, ihm.representation.AtomicSegment)
self.assertFalse(chain.rigid)
self.assertEqual(s.title, 'Auto-generated system')
os.unlink('output.cif')
def test_pass_through(self):
"""Check that make_mmcif passes through already-compliant files"""
incif = utils.get_input_file_name(TOPDIR, 'docking.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(len(s.state_groups), 1)
self.assertEqual(len(s.state_groups[0]), 1)
self.assertEqual(len(s.state_groups[0][0]), 1)
self.assertEqual(len(s.state_groups[0][0][0]), 1)
m = s.state_groups[0][0][0][0]
self.assertEqual(m.protocol.name, 'Modeling')
self.assertEqual(m.assembly.name, 'Our complete assembly')
self.assertEqual(m.assembly.description, 'All our known components')
chain_a, chain_b, = m.representation
self.assertIsInstance(chain_a, ihm.representation.AtomicSegment)
self.assertTrue(chain_a.rigid)
self.assertIsInstance(chain_b, ihm.representation.FeatureSegment)
self.assertFalse(chain_b.rigid)
self.assertEqual(s.title, 'Output from simple-docking example')
os.unlink('output.cif')
def test_complete_assembly_order(self):
"""Check that assembly order does not matter"""
incif = utils.get_input_file_name(TOPDIR, 'docking_order.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
m = s.state_groups[0][0][0][0]
self.assertEqual(m.assembly.name, 'Our complete assembly')
self.assertEqual(m.assembly.description, 'All our known components')
def test_add_polymers(self):
"""Check that make_mmcif combines polymer information"""
# mini.cif contains two chains A, B
incif = utils.get_input_file_name(TOPDIR, 'mini.cif')
# mini_add.cif also contains A, B; A is the same sequence as mini.cif
# but B is different (so should be renamed C when we add)
addcif = utils.get_input_file_name(TOPDIR, 'mini_add.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif,
'--add', addcif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(len(s.entities), 3)
self.assertEqual(len(s.asym_units), 3)
self.assertEqual(len(s.state_groups), 2)
# Model from mini.cif
self.assertEqual(len(s.state_groups[0]), 1)
self.assertEqual(len(s.state_groups[0][0]), 1)
self.assertEqual(len(s.state_groups[0][0][0]), 1)
m = s.state_groups[0][0][0][0]
self.assertEqual(m.protocol.name, 'modeling')
self.assertEqual(m.assembly.name, 'Modeled assembly')
chain_a, chain_b, = m.representation
self.assertIs(chain_a.asym_unit.asym, s.asym_units[0])
self.assertIs(chain_b.asym_unit.asym, s.asym_units[1])
for chain in chain_a, chain_b:
self.assertIsInstance(chain, ihm.representation.AtomicSegment)
self.assertFalse(chain.rigid)
# Model from mini_add.cif
self.assertEqual(len(s.state_groups[1]), 1)
self.assertEqual(len(s.state_groups[1][0]), 1)
self.assertEqual(len(s.state_groups[1][0][0]), 1)
m = s.state_groups[1][0][0][0]
self.assertEqual(m.protocol.name, 'modeling')
self.assertEqual(m.assembly.name, 'Modeled assembly')
chain_a, chain_c, = m.representation
self.assertIs(chain_a.asym_unit.asym, s.asym_units[0])
self.assertIs(chain_c.asym_unit.asym, s.asym_units[2])
for chain in chain_a, chain_c:
self.assertIsInstance(chain, ihm.representation.AtomicSegment)
self.assertFalse(chain.rigid)
self.assertEqual(s.title, 'Auto-generated system')
os.unlink('output.cif')
def test_add_non_polymers(self):
"""Check that make_mmcif combines non-polymer information"""
# mini_nonpoly.cif contains two hemes A, B
incif = utils.get_input_file_name(TOPDIR, 'mini_nonpoly.cif')
# mini_nonpoly_add.cif also contains A, B; A has the same author
# provided residue number as mini_nonpoly.cif but B is different
# (so should be renamed C when we add)
addcif = utils.get_input_file_name(TOPDIR, 'mini_nonpoly_add.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif,
'--add', addcif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
self.assertEqual(len(s.entities), 1)
self.assertEqual(len(s.asym_units), 3)
self.assertEqual(len(s.state_groups), 2)
# Model from mini_nonpoly.cif
self.assertEqual(len(s.state_groups[0]), 1)
self.assertEqual(len(s.state_groups[0][0]), 1)
self.assertEqual(len(s.state_groups[0][0][0]), 1)
m = s.state_groups[0][0][0][0]
self.assertEqual(m.protocol.name, 'modeling')
self.assertEqual(m.assembly.name, 'Modeled assembly')
chain_a, chain_b, = m.representation
self.assertIs(chain_a.asym_unit, s.asym_units[0])
self.assertIs(chain_b.asym_unit, s.asym_units[1])
for chain in chain_a, chain_b:
self.assertIsInstance(chain, ihm.representation.AtomicSegment)
self.assertFalse(chain.rigid)
# Model from mini_nonpoly_add.cif
self.assertEqual(len(s.state_groups[1]), 1)
self.assertEqual(len(s.state_groups[1][0]), 1)
self.assertEqual(len(s.state_groups[1][0][0]), 1)
m = s.state_groups[1][0][0][0]
self.assertEqual(m.protocol.name, 'modeling')
self.assertEqual(m.assembly.name, 'Modeled assembly')
chain_a, chain_c, = m.representation
self.assertIs(chain_a.asym_unit, s.asym_units[0])
self.assertIs(chain_c.asym_unit, s.asym_units[2])
for chain in chain_a, chain_c:
self.assertIsInstance(chain, ihm.representation.AtomicSegment)
self.assertFalse(chain.rigid)
self.assertEqual(s.title, 'Auto-generated system')
os.unlink('output.cif')
def test_add_multi_data(self):
"""make_mmcif should fail to add system with multiple data blocks"""
incif = utils.get_input_file_name(TOPDIR, 'mini.cif')
addcif = utils.get_input_file_name(TOPDIR, 'mini_add.cif')
with open(addcif) as fh:
addcif_contents = fh.read()
addcif_multi = 'addcif_multi.cif'
with open(addcif_multi, 'w') as fh:
fh.write(addcif_contents)
fh.write(addcif_contents.replace('data_model', 'data_model2'))
ret = subprocess.call([sys.executable, MAKE_MMCIF, incif,
'--add', addcif_multi])
self.assertEqual(ret, 1)
os.unlink(addcif_multi)
def test_not_modeled(self):
"""Check addition of not-modeled residue information"""
incif = utils.get_input_file_name(TOPDIR, 'not_modeled.cif')
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
# Residues 5 and 6 in chain A, and 2 in chain B, are missing from
# atom_site. But the file already has an _ihm_residues_not_modeled
# table listing residue 5:A, so we expect to see just 6:A and 2:B
# added
m = s.state_groups[0][0][0][0]
r1, r2, r3 = m.not_modeled_residue_ranges
self.assertEqual((r1.seq_id_begin, r1.seq_id_end), (5, 5))
self.assertEqual(r1.asym_unit._id, 'A')
self.assertEqual((r2.seq_id_begin, r2.seq_id_end), (6, 6))
self.assertEqual(r2.asym_unit._id, 'A')
self.assertEqual((r3.seq_id_begin, r3.seq_id_end), (2, 2))
self.assertEqual(r3.asym_unit._id, 'B')
os.unlink('output.cif')
def test_histidine(self):
"""Test handling multiple histidine protonation states"""
incif = utils.get_input_file_name(TOPDIR, 'histidine.cif')
with open(incif) as fh:
s, = ihm.reader.read(fh)
self.assertEqual([c.id for c in s.entities[0].sequence],
['ALA', 'HIS', 'HIE', 'HIP', 'ALA'])
subprocess.check_call([sys.executable, MAKE_MMCIF,
'--histidine', incif])
with open('output.cif') as fh:
s, = ihm.reader.read(fh)
# All histidines should now be HIS
self.assertEqual([c.id for c in s.entities[0].sequence],
['ALA', 'HIS', 'HIS', 'HIS', 'ALA'])
# All modified histidine atoms should now be ATOM not HETATM;
# the last atom in the last ALA residue (which was marked HETATM in
# the input) should still be HETATM.
for state_group in s.state_groups:
for state in state_group:
for model_group in state:
for model in model_group:
self.assertEqual([x.het for x in model._atoms],
[False, False, False, False, True])
os.unlink('output.cif')
def test_check_non_canon_atom_standard(self):
"""Test check for non-canonical atom names, standard restypes"""
minicif = utils.get_input_file_name(TOPDIR, 'mini.cif')
incif = utils.get_input_file_name(TOPDIR, 'non_canon_atom.cif')
# Should work fine without check
subprocess.check_call([sys.executable, MAKE_MMCIF, incif])
os.unlink('output.cif')
# Should also work fine for file with canonical atom names
subprocess.check_call([sys.executable, MAKE_MMCIF,
"--check_atom_names=standard", minicif])
os.unlink('output.cif')
# Should fail with check enabled
r = subprocess.Popen([sys.executable, MAKE_MMCIF,
"--check_atom_names=standard", incif],
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
universal_newlines=True)
out, err = r.communicate()
self.assertEqual(r.returncode, 1)
# Non-canonical atoms in standard residues should be reported
# Non-standard residues (ZN, ...) are not checked
self.assertIn("Non-canonical atom names found in the following "
"residues: GLN: ['bad3']; VAL: ['bad1', 'bad2']",
err)
os.unlink('output.cif')
def test_check_non_canon_atom_all(self):
"""Test check for non-canonical atom names, all restypes"""
incif = utils.get_input_file_name(TOPDIR, 'non_canon_atom.cif')
# Use mock urllib so we don't hit the network during this test
env = os.environ.copy()
mockdir = os.path.join(TOPDIR, 'test', 'mock', 'non_canon_atom')
env['PYTHONPATH'] = mockdir + os.pathsep + env['PYTHONPATH']
r = subprocess.Popen([sys.executable, MAKE_MMCIF,
"--check_atom_names=all", incif],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True, env=env)
out, err = r.communicate()
self.assertEqual(r.returncode, 1)
# Non-canonical atoms in standard residues should be reported
# Non-standard residue (ZN) should also be checked
self.assertIn("Non-canonical atom names found in the following "
"residues: GLN: ['bad3']; VAL: ['bad1', 'bad2']; "
"ZN: ['bad4']", err)
# Residues not in CCD should give a warning
self.assertIn("Component invalid-comp-name could not be found in CCD",
err)
os.unlink('output.cif')
if __name__ == '__main__':
unittest.main()
|