1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
# -*- coding: utf-8 -*-
# imageio is distributed under the terms of the (new) BSD License.
# This code was taken from visvis/vvmovy/images2swf.py
# styletest: ignore E261
"""
Provides a function (write_swf) to store a series of numpy arrays in an
SWF movie, that can be played on a wide range of OS's.
In desperation of wanting to share animated images, and then lacking a good
writer for animated gif or .avi, I decided to look into SWF. This format
is very well documented.
This is a pure python module to create an SWF file that shows a series
of images. The images are stored using the DEFLATE algorithm (same as
PNG and ZIP and which is included in the standard Python distribution).
As this compression algorithm is much more effective than that used in
GIF images, we obtain better quality (24 bit colors + alpha channel)
while still producesing smaller files (a test showed ~75%). Although
SWF also allows for JPEG compression, doing so would probably require
a third party library for the JPEG encoding/decoding, we could
perhaps do this via Pillow or freeimage.
This module requires Python 2.x / 3,x and numpy.
sources and tools:
- SWF on wikipedia
- Adobes "SWF File Format Specification" version 10
(http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf)
- swftools (swfdump in specific) for debugging
- iwisoft swf2avi can be used to convert swf to avi/mpg/flv with really
good quality, while file size is reduced with factors 20-100.
A good program in my opinion. The free version has the limitation
of a watermark in the upper left corner.
"""
import os
import sys
import zlib
import time # noqa
import numpy as np
from ..core import string_types, binary_type
PY3 = sys.version_info >= (3,)
# todo: use Pillow to support reading JPEG images from SWF?
## Base functions and classes
class BitArray:
""" Dynamic array of bits that automatically resizes
with factors of two.
Append bits using .append() or +=
You can reverse bits using .reverse()
"""
def __init__(self, initvalue=None):
self.data = np.zeros((16,), dtype=np.uint8)
self._len = 0
if initvalue is not None:
self.append(initvalue)
def __len__(self):
return self._len # self.data.shape[0]
def __repr__(self):
return self.data[: self._len].tostring().decode("ascii")
def _checkSize(self):
# check length... grow if necessary
arraylen = self.data.shape[0]
if self._len >= arraylen:
tmp = np.zeros((arraylen * 2,), dtype=np.uint8)
tmp[: self._len] = self.data[: self._len]
self.data = tmp
def __add__(self, value):
self.append(value)
return self
def append(self, bits):
# check input
if isinstance(bits, BitArray):
bits = str(bits)
if isinstance(bits, int): # pragma: no cover - we dont use it
bits = str(bits)
if not isinstance(bits, string_types): # pragma: no cover
raise ValueError("Append bits as strings or integers!")
# add bits
for bit in bits:
self.data[self._len] = ord(bit)
self._len += 1
self._checkSize()
def reverse(self):
""" In-place reverse. """
tmp = self.data[: self._len].copy()
self.data[: self._len] = tmp[::-1]
def tobytes(self):
""" Convert to bytes. If necessary,
zeros are padded to the end (right side).
"""
bits = str(self)
# determine number of bytes
nbytes = 0
while nbytes * 8 < len(bits):
nbytes += 1
# pad
bits = bits.ljust(nbytes * 8, "0")
# go from bits to bytes
bb = binary_type()
for i in range(nbytes):
tmp = int(bits[i * 8 : (i + 1) * 8], 2)
bb += int2uint8(tmp)
# done
return bb
if PY3:
def int2uint32(i):
return int(i).to_bytes(4, "little")
def int2uint16(i):
return int(i).to_bytes(2, "little")
def int2uint8(i):
return int(i).to_bytes(1, "little")
else: # pragma: no cover
def int2uint32(i):
number = int(i)
n1, n2, n3, n4 = 1, 256, 256 * 256, 256 * 256 * 256 # noqa
b4, number = number // n4, number % n4
b3, number = number // n3, number % n3
b2, number = number // n2, number % n2
b1 = number
return chr(b1) + chr(b2) + chr(b3) + chr(b4)
def int2uint16(i):
i = int(i)
# devide in two parts (bytes)
i1 = i % 256
i2 = int(i // 256)
# make string (little endian)
return chr(i1) + chr(i2)
def int2uint8(i):
return chr(int(i))
def int2bits(i, n=None):
""" convert int to a string of bits (0's and 1's in a string),
pad to n elements. Convert back using int(ss,2). """
ii = i
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.reverse()
# justify
if n is not None:
if len(bb) > n: # pragma: no cover
raise ValueError("int2bits fail: len larger than padlength.")
bb = str(bb).rjust(n, "0")
# done
return BitArray(bb)
def bits2int(bb, n=8):
# Init
value = ""
# Get value in bits
for i in range(len(bb)):
b = bb[i : i + 1]
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
# Make decimal
return int(value[:n], 2)
def get_type_and_len(bb):
""" bb should be 6 bytes at least
Return (type, length, length_of_full_tag)
"""
# Init
value = ""
# Get first 16 bits
for i in range(2):
b = bb[i : i + 1]
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
# Get type and length
type = int(value[:10], 2)
L = int(value[10:], 2)
L2 = L + 2
# Long tag header?
if L == 63: # '111111'
value = ""
for i in range(2, 6):
b = bb[i : i + 1] # becomes a single-byte bytes() on both PY3 & PY2
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
L = int(value, 2)
L2 = L + 6
# Done
return type, L, L2
def signedint2bits(i, n=None):
""" convert signed int to a string of bits (0's and 1's in a string),
pad to n elements. Negative numbers are stored in 2's complement bit
patterns, thus positive numbers always start with a 0.
"""
# negative number?
ii = i
if i < 0:
# A negative number, -n, is represented as the bitwise opposite of
ii = abs(ii) - 1 # the positive-zero number n-1.
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.reverse()
# justify
bb = "0" + str(bb) # always need the sign bit in front
if n is not None:
if len(bb) > n: # pragma: no cover
raise ValueError("signedint2bits fail: len larger than padlength.")
bb = bb.rjust(n, "0")
# was it negative? (then opposite bits)
if i < 0:
bb = bb.replace("0", "x").replace("1", "0").replace("x", "1")
# done
return BitArray(bb)
def twits2bits(arr):
""" Given a few (signed) numbers, store them
as compactly as possible in the wat specifief by the swf format.
The numbers are multiplied by 20, assuming they
are twits.
Can be used to make the RECT record.
"""
# first determine length using non justified bit strings
maxlen = 1
for i in arr:
tmp = len(signedint2bits(i * 20))
if tmp > maxlen:
maxlen = tmp
# build array
bits = int2bits(maxlen, 5)
for i in arr:
bits += signedint2bits(i * 20, maxlen)
return bits
def floats2bits(arr):
""" Given a few (signed) numbers, convert them to bits,
stored as FB (float bit values). We always use 16.16.
Negative numbers are not (yet) possible, because I don't
know how the're implemented (ambiguity).
"""
bits = int2bits(31, 5) # 32 does not fit in 5 bits!
for i in arr:
if i < 0: # pragma: no cover
raise ValueError("Dit not implement negative floats!")
i1 = int(i)
i2 = i - i1
bits += int2bits(i1, 15)
bits += int2bits(i2 * 2 ** 16, 16)
return bits
## Base Tag
class Tag:
def __init__(self):
self.bytes = binary_type()
self.tagtype = -1
def process_tag(self):
""" Implement this to create the tag. """
raise NotImplementedError()
def get_tag(self):
""" Calls processTag and attaches the header. """
self.process_tag()
# tag to binary
bits = int2bits(self.tagtype, 10)
# complete header uint16 thing
bits += "1" * 6 # = 63 = 0x3f
# make uint16
bb = int2uint16(int(str(bits), 2))
# now add 32bit length descriptor
bb += int2uint32(len(self.bytes))
# done, attach and return
bb += self.bytes
return bb
def make_rect_record(self, xmin, xmax, ymin, ymax):
""" Simply uses makeCompactArray to produce
a RECT Record. """
return twits2bits([xmin, xmax, ymin, ymax])
def make_matrix_record(self, scale_xy=None, rot_xy=None, trans_xy=None):
# empty matrix?
if scale_xy is None and rot_xy is None and trans_xy is None:
return "0" * 8
# init
bits = BitArray()
# scale
if scale_xy:
bits += "1"
bits += floats2bits([scale_xy[0], scale_xy[1]])
else:
bits += "0"
# rotation
if rot_xy:
bits += "1"
bits += floats2bits([rot_xy[0], rot_xy[1]])
else:
bits += "0"
# translation (no flag here)
if trans_xy:
bits += twits2bits([trans_xy[0], trans_xy[1]])
else:
bits += twits2bits([0, 0])
# done
return bits
## Control tags
class ControlTag(Tag):
def __init__(self):
Tag.__init__(self)
class FileAttributesTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 69
def process_tag(self):
self.bytes = "\x00".encode("ascii") * (1 + 3)
class ShowFrameTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 1
def process_tag(self):
self.bytes = binary_type()
class SetBackgroundTag(ControlTag):
""" Set the color in 0-255, or 0-1 (if floats given). """
def __init__(self, *rgb):
self.tagtype = 9
if len(rgb) == 1:
rgb = rgb[0]
self.rgb = rgb
def process_tag(self):
bb = binary_type()
for i in range(3):
clr = self.rgb[i]
if isinstance(clr, float): # pragma: no cover - not used
clr = clr * 255
bb += int2uint8(clr)
self.bytes = bb
class DoActionTag(Tag):
def __init__(self, action="stop"):
Tag.__init__(self)
self.tagtype = 12
self.actions = [action]
def append(self, action): # pragma: no cover - not used
self.actions.append(action)
def process_tag(self):
bb = binary_type()
for action in self.actions:
action = action.lower()
if action == "stop":
bb += "\x07".encode("ascii")
elif action == "play": # pragma: no cover - not used
bb += "\x06".encode("ascii")
else: # pragma: no cover
print("warning, unkown action: %s" % action)
bb += int2uint8(0)
self.bytes = bb
## Definition tags
class DefinitionTag(Tag):
counter = 0 # to give automatically id's
def __init__(self):
Tag.__init__(self)
DefinitionTag.counter += 1
self.id = DefinitionTag.counter # id in dictionary
class BitmapTag(DefinitionTag):
def __init__(self, im):
DefinitionTag.__init__(self)
self.tagtype = 36 # DefineBitsLossless2
# convert image (note that format is ARGB)
# even a grayscale image is stored in ARGB, nevertheless,
# the fabilous deflate compression will make it that not much
# more data is required for storing (25% or so, and less than 10%
# when storing RGB as ARGB).
if len(im.shape) == 3:
if im.shape[2] in [3, 4]:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
for i in range(3):
tmp[:, :, i + 1] = im[:, :, i]
if im.shape[2] == 4:
tmp[:, :, 0] = im[:, :, 3] # swap channel where alpha is
else: # pragma: no cover
raise ValueError("Invalid shape to be an image.")
elif len(im.shape) == 2:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
for i in range(3):
tmp[:, :, i + 1] = im[:, :]
else: # pragma: no cover
raise ValueError("Invalid shape to be an image.")
# we changed the image to uint8 4 channels.
# now compress!
self._data = zlib.compress(tmp.tostring(), zlib.DEFLATED)
self.imshape = im.shape
def process_tag(self):
# build tag
bb = binary_type()
bb += int2uint16(self.id) # CharacterID
bb += int2uint8(5) # BitmapFormat
bb += int2uint16(self.imshape[1]) # BitmapWidth
bb += int2uint16(self.imshape[0]) # BitmapHeight
bb += self._data # ZlibBitmapData
self.bytes = bb
class PlaceObjectTag(ControlTag):
def __init__(self, depth, idToPlace=None, xy=(0, 0), move=False):
ControlTag.__init__(self)
self.tagtype = 26
self.depth = depth
self.idToPlace = idToPlace
self.xy = xy
self.move = move
def process_tag(self):
# retrieve stuff
depth = self.depth
xy = self.xy
id = self.idToPlace
# build PlaceObject2
bb = binary_type()
if self.move:
bb += "\x07".encode("ascii")
else:
# (8 bit flags): 4:matrix, 2:character, 1:move
bb += "\x06".encode("ascii")
bb += int2uint16(depth) # Depth
bb += int2uint16(id) # character id
bb += self.make_matrix_record(trans_xy=xy).tobytes() # MATRIX record
self.bytes = bb
class ShapeTag(DefinitionTag):
def __init__(self, bitmapId, xy, wh):
DefinitionTag.__init__(self)
self.tagtype = 2
self.bitmapId = bitmapId
self.xy = xy
self.wh = wh
def process_tag(self):
""" Returns a defineshape tag. with a bitmap fill """
bb = binary_type()
bb += int2uint16(self.id)
xy, wh = self.xy, self.wh
tmp = self.make_rect_record(xy[0], wh[0], xy[1], wh[1]) # ShapeBounds
bb += tmp.tobytes()
# make SHAPEWITHSTYLE structure
# first entry: FILLSTYLEARRAY with in it a single fill style
bb += int2uint8(1) # FillStyleCount
bb += "\x41".encode("ascii") # FillStyleType (0x41 or 0x43 unsmoothed)
bb += int2uint16(self.bitmapId) # BitmapId
# bb += '\x00' # BitmapMatrix (empty matrix with leftover bits filled)
bb += self.make_matrix_record(scale_xy=(20, 20)).tobytes()
# # first entry: FILLSTYLEARRAY with in it a single fill style
# bb += int2uint8(1) # FillStyleCount
# bb += '\x00' # solid fill
# bb += '\x00\x00\xff' # color
# second entry: LINESTYLEARRAY with a single line style
bb += int2uint8(0) # LineStyleCount
# bb += int2uint16(0*20) # Width
# bb += '\x00\xff\x00' # Color
# third and fourth entry: NumFillBits and NumLineBits (4 bits each)
# I each give them four bits, so 16 styles possible.
bb += "\x44".encode("ascii")
self.bytes = bb
# last entries: SHAPERECORDs ... (individual shape records not aligned)
# STYLECHANGERECORD
bits = BitArray()
bits += self.make_style_change_record(0, 1, moveTo=(self.wh[0], self.wh[1]))
# STRAIGHTEDGERECORD 4x
bits += self.make_straight_edge_record(-self.wh[0], 0)
bits += self.make_straight_edge_record(0, -self.wh[1])
bits += self.make_straight_edge_record(self.wh[0], 0)
bits += self.make_straight_edge_record(0, self.wh[1])
# ENDSHAPRECORD
bits += self.make_end_shape_record()
self.bytes += bits.tobytes()
# done
# self.bytes = bb
def make_style_change_record(self, lineStyle=None, fillStyle=None, moveTo=None):
# first 6 flags
# Note that we use FillStyle1. If we don't flash (at least 8) does not
# recognize the frames properly when importing to library.
bits = BitArray()
bits += "0" # TypeFlag (not an edge record)
bits += "0" # StateNewStyles (only for DefineShape2 and Defineshape3)
if lineStyle:
bits += "1" # StateLineStyle
else:
bits += "0"
if fillStyle:
bits += "1" # StateFillStyle1
else:
bits += "0"
bits += "0" # StateFillStyle0
if moveTo:
bits += "1" # StateMoveTo
else:
bits += "0"
# give information
# todo: nbits for fillStyle and lineStyle is hard coded.
if moveTo:
bits += twits2bits([moveTo[0], moveTo[1]])
if fillStyle:
bits += int2bits(fillStyle, 4)
if lineStyle:
bits += int2bits(lineStyle, 4)
return bits
def make_straight_edge_record(self, *dxdy):
if len(dxdy) == 1:
dxdy = dxdy[0]
# determine required number of bits
xbits = signedint2bits(dxdy[0] * 20)
ybits = signedint2bits(dxdy[1] * 20)
nbits = max([len(xbits), len(ybits)])
bits = BitArray()
bits += "11" # TypeFlag and StraightFlag
bits += int2bits(nbits - 2, 4)
bits += "1" # GeneralLineFlag
bits += signedint2bits(dxdy[0] * 20, nbits)
bits += signedint2bits(dxdy[1] * 20, nbits)
# note: I do not make use of vertical/horizontal only lines...
return bits
def make_end_shape_record(self):
bits = BitArray()
bits += "0" # TypeFlag: no edge
bits += "0" * 5 # EndOfShape
return bits
def read_pixels(bb, i, tagType, L1):
""" With pf's seed after the recordheader, reads the pixeldata.
"""
# Get info
charId = bb[i : i + 2] # noqa
i += 2
format = ord(bb[i : i + 1])
i += 1
width = bits2int(bb[i : i + 2], 16)
i += 2
height = bits2int(bb[i : i + 2], 16)
i += 2
# If we can, get pixeldata and make numpy array
if format != 5:
print("Can only read 24bit or 32bit RGB(A) lossless images.")
else:
# Read byte data
offset = 2 + 1 + 2 + 2 # all the info bits
bb2 = bb[i : i + (L1 - offset)]
# Decompress and make numpy array
data = zlib.decompress(bb2)
a = np.frombuffer(data, dtype=np.uint8)
# Set shape
if tagType == 20:
# DefineBitsLossless - RGB data
try:
a.shape = height, width, 3
except Exception:
# Byte align stuff might cause troubles
print("Cannot read image due to byte alignment")
if tagType == 36:
# DefineBitsLossless2 - ARGB data
a.shape = height, width, 4
# Swap alpha channel to make RGBA
b = a
a = np.zeros_like(a)
a[:, :, 0] = b[:, :, 1]
a[:, :, 1] = b[:, :, 2]
a[:, :, 2] = b[:, :, 3]
a[:, :, 3] = b[:, :, 0]
return a
## Last few functions
# These are the original public functions, we don't use them, but we
# keep it so that in principle this module can be used stand-alone.
def checkImages(images): # pragma: no cover
""" checkImages(images)
Check numpy images and correct intensity range etc.
The same for all movie formats.
"""
# Init results
images2 = []
for im in images:
if isinstance(im, np.ndarray):
# Check and convert dtype
if im.dtype == np.uint8:
images2.append(im) # Ok
elif im.dtype in [np.float32, np.float64]:
theMax = im.max()
if 128 < theMax < 300:
pass # assume 0:255
else:
im = im.copy()
im[im < 0] = 0
im[im > 1] = 1
im *= 255
images2.append(im.astype(np.uint8))
else:
im = im.astype(np.uint8)
images2.append(im)
# Check size
if im.ndim == 2:
pass # ok
elif im.ndim == 3:
if im.shape[2] not in [3, 4]:
raise ValueError("This array can not represent an image.")
else:
raise ValueError("This array can not represent an image.")
else:
raise ValueError("Invalid image type: " + str(type(im)))
# Done
return images2
def build_file(
fp, taglist, nframes=1, framesize=(500, 500), fps=10, version=8
): # pragma: no cover
""" Give the given file (as bytes) a header. """
# compose header
bb = binary_type()
bb += "F".encode("ascii") # uncompressed
bb += "WS".encode("ascii") # signature bytes
bb += int2uint8(version) # version
bb += "0000".encode("ascii") # FileLength (leave open for now)
bb += Tag().make_rect_record(0, framesize[0], 0, framesize[1]).tobytes()
bb += int2uint8(0) + int2uint8(fps) # FrameRate
bb += int2uint16(nframes)
fp.write(bb)
# produce all tags
for tag in taglist:
fp.write(tag.get_tag())
# finish with end tag
fp.write("\x00\x00".encode("ascii"))
# set size
sze = fp.tell()
fp.seek(4)
fp.write(int2uint32(sze))
def write_swf(filename, images, duration=0.1, repeat=True): # pragma: no cover
"""Write an swf-file from the specified images. If repeat is False,
the movie is finished with a stop action. Duration may also
be a list with durations for each frame (note that the duration
for each frame is always an integer amount of the minimum duration.)
Images should be a list consisting numpy arrays with values between
0 and 255 for integer types, and between 0 and 1 for float types.
"""
# Check images
images2 = checkImages(images)
# Init
taglist = [FileAttributesTag(), SetBackgroundTag(0, 0, 0)]
# Check duration
if hasattr(duration, "__len__"):
if len(duration) == len(images2):
duration = [d for d in duration]
else:
raise ValueError("len(duration) doesn't match amount of images.")
else:
duration = [duration for im in images2]
# Build delays list
minDuration = float(min(duration))
delays = [round(d / minDuration) for d in duration]
delays = [max(1, int(d)) for d in delays]
# Get FPS
fps = 1.0 / minDuration
# Produce series of tags for each image
# t0 = time.time()
nframes = 0
for im in images2:
bm = BitmapTag(im)
wh = (im.shape[1], im.shape[0])
sh = ShapeTag(bm.id, (0, 0), wh)
po = PlaceObjectTag(1, sh.id, move=nframes > 0)
taglist.extend([bm, sh, po])
for i in range(delays[nframes]):
taglist.append(ShowFrameTag())
nframes += 1
if not repeat:
taglist.append(DoActionTag("stop"))
# Build file
# t1 = time.time()
fp = open(filename, "wb")
try:
build_file(fp, taglist, nframes=nframes, framesize=wh, fps=fps)
except Exception:
raise
finally:
fp.close()
# t2 = time.time()
# print("Writing SWF took %1.2f and %1.2f seconds" % (t1-t0, t2-t1) )
def read_swf(filename): # pragma: no cover
"""Read all images from an SWF (shockwave flash) file. Returns a list
of numpy arrays.
Limitation: only read the PNG encoded images (not the JPG encoded ones).
"""
# Check whether it exists
if not os.path.isfile(filename):
raise IOError("File not found: " + str(filename))
# Init images
images = []
# Open file and read all
fp = open(filename, "rb")
bb = fp.read()
try:
# Check opening tag
tmp = bb[0:3].decode("ascii", "ignore")
if tmp.upper() == "FWS":
pass # ok
elif tmp.upper() == "CWS":
# Decompress movie
bb = bb[:8] + zlib.decompress(bb[8:])
else:
raise IOError("Not a valid SWF file: " + str(filename))
# Set filepointer at first tag (skipping framesize RECT and two uin16's
i = 8
nbits = bits2int(bb[i : i + 1], 5) # skip FrameSize
nbits = 5 + nbits * 4
Lrect = nbits / 8.0
if Lrect % 1:
Lrect += 1
Lrect = int(Lrect)
i += Lrect + 4
# Iterate over the tags
counter = 0
while True:
counter += 1
# Get tag header
head = bb[i : i + 6]
if not head:
break # Done (we missed end tag)
# Determine type and length
T, L1, L2 = get_type_and_len(head)
if not L2:
print("Invalid tag length, could not proceed")
break
# print(T, L2)
# Read image if we can
if T in [20, 36]:
im = read_pixels(bb, i + 6, T, L1)
if im is not None:
images.append(im)
elif T in [6, 21, 35, 90]:
print("Ignoring JPEG image: cannot read JPEG.")
else:
pass # Not an image tag
# Detect end tag
if T == 0:
break
# Next tag!
i += L2
finally:
fp.close()
# Done
return images
# Backward compatibility; same public names as when this was images2swf.
writeSwf = write_swf
readSwf = read_swf
|