File: _swf.py

package info (click to toggle)
python-imageio 2.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 4,824 kB
  • sloc: python: 18,306; makefile: 145
file content (928 lines) | stat: -rw-r--r-- 26,511 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
# -*- coding: utf-8 -*-
# imageio is distributed under the terms of the (new) BSD License.
# This code was taken from visvis/vvmovy/images2swf.py

# styletest: ignore E261

""" 
Provides a function (write_swf) to store a series of numpy arrays in an
SWF movie, that can be played on a wide range of OS's.

In desperation of wanting to share animated images, and then lacking a good
writer for animated gif or .avi, I decided to look into SWF. This format
is very well documented. 

This is a pure python module to create an SWF file that shows a series
of images. The images are stored using the DEFLATE algorithm (same as
PNG and ZIP and which is included in the standard Python distribution).
As this compression algorithm is much more effective than that used in
GIF images, we obtain better quality (24 bit colors + alpha channel)
while still producesing smaller files (a test showed ~75%). Although
SWF also allows for JPEG compression, doing so would probably require
a third party library for the JPEG encoding/decoding, we could
perhaps do this via Pillow or freeimage.

This module requires Python 2.x / 3,x and numpy.

sources and tools:

- SWF on wikipedia
- Adobes "SWF File Format Specification" version 10
  (http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf)
- swftools (swfdump in specific) for debugging
- iwisoft swf2avi can be used to convert swf to avi/mpg/flv with really
  good quality, while file size is reduced with factors 20-100.
  A good program in my opinion. The free version has the limitation
  of a watermark in the upper left corner.

"""

import os
import sys
import zlib
import time  # noqa

import numpy as np

from ..core import string_types, binary_type

PY3 = sys.version_info >= (3,)

# todo: use Pillow to support reading JPEG images from SWF?


## Base functions and classes


class BitArray:
    """ Dynamic array of bits that automatically resizes
    with factors of two.
    Append bits using .append() or +=
    You can reverse bits using .reverse()
    """

    def __init__(self, initvalue=None):
        self.data = np.zeros((16,), dtype=np.uint8)
        self._len = 0
        if initvalue is not None:
            self.append(initvalue)

    def __len__(self):
        return self._len  # self.data.shape[0]

    def __repr__(self):
        return self.data[: self._len].tostring().decode("ascii")

    def _checkSize(self):
        # check length... grow if necessary
        arraylen = self.data.shape[0]
        if self._len >= arraylen:
            tmp = np.zeros((arraylen * 2,), dtype=np.uint8)
            tmp[: self._len] = self.data[: self._len]
            self.data = tmp

    def __add__(self, value):
        self.append(value)
        return self

    def append(self, bits):

        # check input
        if isinstance(bits, BitArray):
            bits = str(bits)
        if isinstance(bits, int):  # pragma: no cover - we dont use it
            bits = str(bits)
        if not isinstance(bits, string_types):  # pragma: no cover
            raise ValueError("Append bits as strings or integers!")

        # add bits
        for bit in bits:
            self.data[self._len] = ord(bit)
            self._len += 1
            self._checkSize()

    def reverse(self):
        """ In-place reverse. """
        tmp = self.data[: self._len].copy()
        self.data[: self._len] = tmp[::-1]

    def tobytes(self):
        """ Convert to bytes. If necessary,
        zeros are padded to the end (right side).
        """
        bits = str(self)

        # determine number of bytes
        nbytes = 0
        while nbytes * 8 < len(bits):
            nbytes += 1
        # pad
        bits = bits.ljust(nbytes * 8, "0")

        # go from bits to bytes
        bb = binary_type()
        for i in range(nbytes):
            tmp = int(bits[i * 8 : (i + 1) * 8], 2)
            bb += int2uint8(tmp)

        # done
        return bb


if PY3:

    def int2uint32(i):
        return int(i).to_bytes(4, "little")

    def int2uint16(i):
        return int(i).to_bytes(2, "little")

    def int2uint8(i):
        return int(i).to_bytes(1, "little")


else:  # pragma: no cover

    def int2uint32(i):
        number = int(i)
        n1, n2, n3, n4 = 1, 256, 256 * 256, 256 * 256 * 256  # noqa
        b4, number = number // n4, number % n4
        b3, number = number // n3, number % n3
        b2, number = number // n2, number % n2
        b1 = number
        return chr(b1) + chr(b2) + chr(b3) + chr(b4)

    def int2uint16(i):
        i = int(i)
        # devide in two parts (bytes)
        i1 = i % 256
        i2 = int(i // 256)
        # make string (little endian)
        return chr(i1) + chr(i2)

    def int2uint8(i):
        return chr(int(i))


def int2bits(i, n=None):
    """ convert int to a string of bits (0's and 1's in a string),
    pad to n elements. Convert back using int(ss,2). """
    ii = i

    # make bits
    bb = BitArray()
    while ii > 0:
        bb += str(ii % 2)
        ii = ii >> 1
    bb.reverse()

    # justify
    if n is not None:
        if len(bb) > n:  # pragma: no cover
            raise ValueError("int2bits fail: len larger than padlength.")
        bb = str(bb).rjust(n, "0")

    # done
    return BitArray(bb)


def bits2int(bb, n=8):
    # Init
    value = ""

    # Get value in bits
    for i in range(len(bb)):
        b = bb[i : i + 1]
        tmp = bin(ord(b))[2:]
        # value += tmp.rjust(8,'0')
        value = tmp.rjust(8, "0") + value

    # Make decimal
    return int(value[:n], 2)


def get_type_and_len(bb):
    """ bb should be 6 bytes at least
    Return (type, length, length_of_full_tag)
    """
    # Init
    value = ""

    # Get first 16 bits
    for i in range(2):
        b = bb[i : i + 1]
        tmp = bin(ord(b))[2:]
        # value += tmp.rjust(8,'0')
        value = tmp.rjust(8, "0") + value

    # Get type and length
    type = int(value[:10], 2)
    L = int(value[10:], 2)
    L2 = L + 2

    # Long tag header?
    if L == 63:  # '111111'
        value = ""
        for i in range(2, 6):
            b = bb[i : i + 1]  # becomes a single-byte bytes() on both PY3 & PY2
            tmp = bin(ord(b))[2:]
            # value += tmp.rjust(8,'0')
            value = tmp.rjust(8, "0") + value
        L = int(value, 2)
        L2 = L + 6

    # Done
    return type, L, L2


def signedint2bits(i, n=None):
    """ convert signed int to a string of bits (0's and 1's in a string),
    pad to n elements. Negative numbers are stored in 2's complement bit
    patterns, thus positive numbers always start with a 0.
    """

    # negative number?
    ii = i
    if i < 0:
        # A negative number, -n, is represented as the bitwise opposite of
        ii = abs(ii) - 1  # the positive-zero number n-1.

    # make bits
    bb = BitArray()
    while ii > 0:
        bb += str(ii % 2)
        ii = ii >> 1
    bb.reverse()

    # justify
    bb = "0" + str(bb)  # always need the sign bit in front
    if n is not None:
        if len(bb) > n:  # pragma: no cover
            raise ValueError("signedint2bits fail: len larger than padlength.")
        bb = bb.rjust(n, "0")

    # was it negative? (then opposite bits)
    if i < 0:
        bb = bb.replace("0", "x").replace("1", "0").replace("x", "1")

    # done
    return BitArray(bb)


def twits2bits(arr):
    """ Given a few (signed) numbers, store them
    as compactly as possible in the wat specifief by the swf format.
    The numbers are multiplied by 20, assuming they
    are twits.
    Can be used to make the RECT record.
    """

    # first determine length using non justified bit strings
    maxlen = 1
    for i in arr:
        tmp = len(signedint2bits(i * 20))
        if tmp > maxlen:
            maxlen = tmp

    # build array
    bits = int2bits(maxlen, 5)
    for i in arr:
        bits += signedint2bits(i * 20, maxlen)

    return bits


def floats2bits(arr):
    """ Given a few (signed) numbers, convert them to bits,
    stored as FB (float bit values). We always use 16.16.
    Negative numbers are not (yet) possible, because I don't
    know how the're implemented (ambiguity).
    """
    bits = int2bits(31, 5)  # 32 does not fit in 5 bits!
    for i in arr:
        if i < 0:  # pragma: no cover
            raise ValueError("Dit not implement negative floats!")
        i1 = int(i)
        i2 = i - i1
        bits += int2bits(i1, 15)
        bits += int2bits(i2 * 2 ** 16, 16)
    return bits


## Base Tag


class Tag:
    def __init__(self):
        self.bytes = binary_type()
        self.tagtype = -1

    def process_tag(self):
        """ Implement this to create the tag. """
        raise NotImplementedError()

    def get_tag(self):
        """ Calls processTag and attaches the header. """
        self.process_tag()

        # tag to binary
        bits = int2bits(self.tagtype, 10)

        # complete header uint16 thing
        bits += "1" * 6  # = 63 = 0x3f
        # make uint16
        bb = int2uint16(int(str(bits), 2))

        # now add 32bit length descriptor
        bb += int2uint32(len(self.bytes))

        # done, attach and return
        bb += self.bytes
        return bb

    def make_rect_record(self, xmin, xmax, ymin, ymax):
        """ Simply uses makeCompactArray to produce
        a RECT Record. """
        return twits2bits([xmin, xmax, ymin, ymax])

    def make_matrix_record(self, scale_xy=None, rot_xy=None, trans_xy=None):

        # empty matrix?
        if scale_xy is None and rot_xy is None and trans_xy is None:
            return "0" * 8

        # init
        bits = BitArray()

        # scale
        if scale_xy:
            bits += "1"
            bits += floats2bits([scale_xy[0], scale_xy[1]])
        else:
            bits += "0"

        # rotation
        if rot_xy:
            bits += "1"
            bits += floats2bits([rot_xy[0], rot_xy[1]])
        else:
            bits += "0"

        # translation (no flag here)
        if trans_xy:
            bits += twits2bits([trans_xy[0], trans_xy[1]])
        else:
            bits += twits2bits([0, 0])

        # done
        return bits


## Control tags


class ControlTag(Tag):
    def __init__(self):
        Tag.__init__(self)


class FileAttributesTag(ControlTag):
    def __init__(self):
        ControlTag.__init__(self)
        self.tagtype = 69

    def process_tag(self):
        self.bytes = "\x00".encode("ascii") * (1 + 3)


class ShowFrameTag(ControlTag):
    def __init__(self):
        ControlTag.__init__(self)
        self.tagtype = 1

    def process_tag(self):
        self.bytes = binary_type()


class SetBackgroundTag(ControlTag):
    """ Set the color in 0-255, or 0-1 (if floats given). """

    def __init__(self, *rgb):
        self.tagtype = 9
        if len(rgb) == 1:
            rgb = rgb[0]
        self.rgb = rgb

    def process_tag(self):
        bb = binary_type()
        for i in range(3):
            clr = self.rgb[i]
            if isinstance(clr, float):  # pragma: no cover - not used
                clr = clr * 255
            bb += int2uint8(clr)
        self.bytes = bb


class DoActionTag(Tag):
    def __init__(self, action="stop"):
        Tag.__init__(self)
        self.tagtype = 12
        self.actions = [action]

    def append(self, action):  # pragma: no cover - not used
        self.actions.append(action)

    def process_tag(self):
        bb = binary_type()

        for action in self.actions:
            action = action.lower()
            if action == "stop":
                bb += "\x07".encode("ascii")
            elif action == "play":  # pragma: no cover - not used
                bb += "\x06".encode("ascii")
            else:  # pragma: no cover
                print("warning, unkown action: %s" % action)

        bb += int2uint8(0)
        self.bytes = bb


## Definition tags
class DefinitionTag(Tag):
    counter = 0  # to give automatically id's

    def __init__(self):
        Tag.__init__(self)
        DefinitionTag.counter += 1
        self.id = DefinitionTag.counter  # id in dictionary


class BitmapTag(DefinitionTag):
    def __init__(self, im):
        DefinitionTag.__init__(self)
        self.tagtype = 36  # DefineBitsLossless2

        # convert image (note that format is ARGB)
        # even a grayscale image is stored in ARGB, nevertheless,
        # the fabilous deflate compression will make it that not much
        # more data is required for storing (25% or so, and less than 10%
        # when storing RGB as ARGB).

        if len(im.shape) == 3:
            if im.shape[2] in [3, 4]:
                tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
                for i in range(3):
                    tmp[:, :, i + 1] = im[:, :, i]
                if im.shape[2] == 4:
                    tmp[:, :, 0] = im[:, :, 3]  # swap channel where alpha is
            else:  # pragma: no cover
                raise ValueError("Invalid shape to be an image.")

        elif len(im.shape) == 2:
            tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
            for i in range(3):
                tmp[:, :, i + 1] = im[:, :]
        else:  # pragma: no cover
            raise ValueError("Invalid shape to be an image.")

        # we changed the image to uint8 4 channels.
        # now compress!
        self._data = zlib.compress(tmp.tostring(), zlib.DEFLATED)
        self.imshape = im.shape

    def process_tag(self):

        # build tag
        bb = binary_type()
        bb += int2uint16(self.id)  # CharacterID
        bb += int2uint8(5)  # BitmapFormat
        bb += int2uint16(self.imshape[1])  # BitmapWidth
        bb += int2uint16(self.imshape[0])  # BitmapHeight
        bb += self._data  # ZlibBitmapData

        self.bytes = bb


class PlaceObjectTag(ControlTag):
    def __init__(self, depth, idToPlace=None, xy=(0, 0), move=False):
        ControlTag.__init__(self)
        self.tagtype = 26
        self.depth = depth
        self.idToPlace = idToPlace
        self.xy = xy
        self.move = move

    def process_tag(self):
        # retrieve stuff
        depth = self.depth
        xy = self.xy
        id = self.idToPlace

        # build PlaceObject2
        bb = binary_type()
        if self.move:
            bb += "\x07".encode("ascii")
        else:
            # (8 bit flags): 4:matrix, 2:character, 1:move
            bb += "\x06".encode("ascii")
        bb += int2uint16(depth)  # Depth
        bb += int2uint16(id)  # character id
        bb += self.make_matrix_record(trans_xy=xy).tobytes()  # MATRIX record
        self.bytes = bb


class ShapeTag(DefinitionTag):
    def __init__(self, bitmapId, xy, wh):
        DefinitionTag.__init__(self)
        self.tagtype = 2
        self.bitmapId = bitmapId
        self.xy = xy
        self.wh = wh

    def process_tag(self):
        """ Returns a defineshape tag. with a bitmap fill """

        bb = binary_type()
        bb += int2uint16(self.id)
        xy, wh = self.xy, self.wh
        tmp = self.make_rect_record(xy[0], wh[0], xy[1], wh[1])  # ShapeBounds
        bb += tmp.tobytes()

        # make SHAPEWITHSTYLE structure

        # first entry: FILLSTYLEARRAY with in it a single fill style
        bb += int2uint8(1)  # FillStyleCount
        bb += "\x41".encode("ascii")  # FillStyleType (0x41 or 0x43 unsmoothed)
        bb += int2uint16(self.bitmapId)  # BitmapId
        # bb += '\x00' # BitmapMatrix (empty matrix with leftover bits filled)
        bb += self.make_matrix_record(scale_xy=(20, 20)).tobytes()

        #         # first entry: FILLSTYLEARRAY with in it a single fill style
        #         bb += int2uint8(1)  # FillStyleCount
        #         bb += '\x00' # solid fill
        #         bb += '\x00\x00\xff' # color

        # second entry: LINESTYLEARRAY with a single line style
        bb += int2uint8(0)  # LineStyleCount
        # bb += int2uint16(0*20) # Width
        # bb += '\x00\xff\x00'  # Color

        # third and fourth entry: NumFillBits and NumLineBits (4 bits each)
        # I each give them four bits, so 16 styles possible.
        bb += "\x44".encode("ascii")

        self.bytes = bb

        # last entries: SHAPERECORDs ... (individual shape records not aligned)
        # STYLECHANGERECORD
        bits = BitArray()
        bits += self.make_style_change_record(0, 1, moveTo=(self.wh[0], self.wh[1]))
        # STRAIGHTEDGERECORD 4x
        bits += self.make_straight_edge_record(-self.wh[0], 0)
        bits += self.make_straight_edge_record(0, -self.wh[1])
        bits += self.make_straight_edge_record(self.wh[0], 0)
        bits += self.make_straight_edge_record(0, self.wh[1])

        # ENDSHAPRECORD
        bits += self.make_end_shape_record()

        self.bytes += bits.tobytes()

        # done
        # self.bytes = bb

    def make_style_change_record(self, lineStyle=None, fillStyle=None, moveTo=None):

        # first 6 flags
        # Note that we use FillStyle1. If we don't flash (at least 8) does not
        # recognize the frames properly when importing to library.

        bits = BitArray()
        bits += "0"  # TypeFlag (not an edge record)
        bits += "0"  # StateNewStyles (only for DefineShape2 and Defineshape3)
        if lineStyle:
            bits += "1"  # StateLineStyle
        else:
            bits += "0"
        if fillStyle:
            bits += "1"  # StateFillStyle1
        else:
            bits += "0"
        bits += "0"  # StateFillStyle0
        if moveTo:
            bits += "1"  # StateMoveTo
        else:
            bits += "0"

        # give information
        # todo: nbits for fillStyle and lineStyle is hard coded.

        if moveTo:
            bits += twits2bits([moveTo[0], moveTo[1]])
        if fillStyle:
            bits += int2bits(fillStyle, 4)
        if lineStyle:
            bits += int2bits(lineStyle, 4)

        return bits

    def make_straight_edge_record(self, *dxdy):
        if len(dxdy) == 1:
            dxdy = dxdy[0]

        # determine required number of bits
        xbits = signedint2bits(dxdy[0] * 20)
        ybits = signedint2bits(dxdy[1] * 20)
        nbits = max([len(xbits), len(ybits)])

        bits = BitArray()
        bits += "11"  # TypeFlag and StraightFlag
        bits += int2bits(nbits - 2, 4)
        bits += "1"  # GeneralLineFlag
        bits += signedint2bits(dxdy[0] * 20, nbits)
        bits += signedint2bits(dxdy[1] * 20, nbits)

        # note: I do not make use of vertical/horizontal only lines...

        return bits

    def make_end_shape_record(self):
        bits = BitArray()
        bits += "0"  # TypeFlag: no edge
        bits += "0" * 5  # EndOfShape
        return bits


def read_pixels(bb, i, tagType, L1):
    """ With pf's seed after the recordheader, reads the pixeldata.
    """

    # Get info
    charId = bb[i : i + 2]  # noqa
    i += 2
    format = ord(bb[i : i + 1])
    i += 1
    width = bits2int(bb[i : i + 2], 16)
    i += 2
    height = bits2int(bb[i : i + 2], 16)
    i += 2

    # If we can, get pixeldata and make numpy array
    if format != 5:
        print("Can only read 24bit or 32bit RGB(A) lossless images.")
    else:
        # Read byte data
        offset = 2 + 1 + 2 + 2  # all the info bits
        bb2 = bb[i : i + (L1 - offset)]

        # Decompress and make numpy array
        data = zlib.decompress(bb2)
        a = np.frombuffer(data, dtype=np.uint8)

        # Set shape
        if tagType == 20:
            # DefineBitsLossless - RGB data
            try:
                a.shape = height, width, 3
            except Exception:
                # Byte align stuff might cause troubles
                print("Cannot read image due to byte alignment")
        if tagType == 36:
            # DefineBitsLossless2 - ARGB data
            a.shape = height, width, 4
            # Swap alpha channel to make RGBA
            b = a
            a = np.zeros_like(a)
            a[:, :, 0] = b[:, :, 1]
            a[:, :, 1] = b[:, :, 2]
            a[:, :, 2] = b[:, :, 3]
            a[:, :, 3] = b[:, :, 0]

        return a


## Last few functions


# These are the original public functions, we don't use them, but we
# keep it so that in principle this module can be used stand-alone.


def checkImages(images):  # pragma: no cover
    """ checkImages(images)
    Check numpy images and correct intensity range etc.
    The same for all movie formats.
    """
    # Init results
    images2 = []

    for im in images:
        if isinstance(im, np.ndarray):
            # Check and convert dtype
            if im.dtype == np.uint8:
                images2.append(im)  # Ok
            elif im.dtype in [np.float32, np.float64]:
                theMax = im.max()
                if 128 < theMax < 300:
                    pass  # assume 0:255
                else:
                    im = im.copy()
                    im[im < 0] = 0
                    im[im > 1] = 1
                    im *= 255
                images2.append(im.astype(np.uint8))
            else:
                im = im.astype(np.uint8)
                images2.append(im)
            # Check size
            if im.ndim == 2:
                pass  # ok
            elif im.ndim == 3:
                if im.shape[2] not in [3, 4]:
                    raise ValueError("This array can not represent an image.")
            else:
                raise ValueError("This array can not represent an image.")
        else:
            raise ValueError("Invalid image type: " + str(type(im)))

    # Done
    return images2


def build_file(
    fp, taglist, nframes=1, framesize=(500, 500), fps=10, version=8
):  # pragma: no cover
    """ Give the given file (as bytes) a header. """

    # compose header
    bb = binary_type()
    bb += "F".encode("ascii")  # uncompressed
    bb += "WS".encode("ascii")  # signature bytes
    bb += int2uint8(version)  # version
    bb += "0000".encode("ascii")  # FileLength (leave open for now)
    bb += Tag().make_rect_record(0, framesize[0], 0, framesize[1]).tobytes()
    bb += int2uint8(0) + int2uint8(fps)  # FrameRate
    bb += int2uint16(nframes)
    fp.write(bb)

    # produce all tags
    for tag in taglist:
        fp.write(tag.get_tag())

    # finish with end tag
    fp.write("\x00\x00".encode("ascii"))

    # set size
    sze = fp.tell()
    fp.seek(4)
    fp.write(int2uint32(sze))


def write_swf(filename, images, duration=0.1, repeat=True):  # pragma: no cover
    """Write an swf-file from the specified images. If repeat is False,
    the movie is finished with a stop action. Duration may also
    be a list with durations for each frame (note that the duration
    for each frame is always an integer amount of the minimum duration.)

    Images should be a list consisting numpy arrays with values between
    0 and 255 for integer types, and between 0 and 1 for float types.

    """

    # Check images
    images2 = checkImages(images)

    # Init
    taglist = [FileAttributesTag(), SetBackgroundTag(0, 0, 0)]

    # Check duration
    if hasattr(duration, "__len__"):
        if len(duration) == len(images2):
            duration = [d for d in duration]
        else:
            raise ValueError("len(duration) doesn't match amount of images.")
    else:
        duration = [duration for im in images2]

    # Build delays list
    minDuration = float(min(duration))
    delays = [round(d / minDuration) for d in duration]
    delays = [max(1, int(d)) for d in delays]

    # Get FPS
    fps = 1.0 / minDuration

    # Produce series of tags for each image
    # t0 = time.time()
    nframes = 0
    for im in images2:
        bm = BitmapTag(im)
        wh = (im.shape[1], im.shape[0])
        sh = ShapeTag(bm.id, (0, 0), wh)
        po = PlaceObjectTag(1, sh.id, move=nframes > 0)
        taglist.extend([bm, sh, po])
        for i in range(delays[nframes]):
            taglist.append(ShowFrameTag())
        nframes += 1

    if not repeat:
        taglist.append(DoActionTag("stop"))

    # Build file
    # t1 = time.time()
    fp = open(filename, "wb")
    try:
        build_file(fp, taglist, nframes=nframes, framesize=wh, fps=fps)
    except Exception:
        raise
    finally:
        fp.close()
    # t2 = time.time()

    # print("Writing SWF took %1.2f and %1.2f seconds" % (t1-t0, t2-t1) )


def read_swf(filename):  # pragma: no cover
    """Read all images from an SWF (shockwave flash) file. Returns a list
    of numpy arrays.

    Limitation: only read the PNG encoded images (not the JPG encoded ones).
    """

    # Check whether it exists
    if not os.path.isfile(filename):
        raise IOError("File not found: " + str(filename))

    # Init images
    images = []

    # Open file and read all
    fp = open(filename, "rb")
    bb = fp.read()

    try:
        # Check opening tag
        tmp = bb[0:3].decode("ascii", "ignore")
        if tmp.upper() == "FWS":
            pass  # ok
        elif tmp.upper() == "CWS":
            # Decompress movie
            bb = bb[:8] + zlib.decompress(bb[8:])
        else:
            raise IOError("Not a valid SWF file: " + str(filename))

        # Set filepointer at first tag (skipping framesize RECT and two uin16's
        i = 8
        nbits = bits2int(bb[i : i + 1], 5)  # skip FrameSize
        nbits = 5 + nbits * 4
        Lrect = nbits / 8.0
        if Lrect % 1:
            Lrect += 1
        Lrect = int(Lrect)
        i += Lrect + 4

        # Iterate over the tags
        counter = 0
        while True:
            counter += 1

            # Get tag header
            head = bb[i : i + 6]
            if not head:
                break  # Done (we missed end tag)

            # Determine type and length
            T, L1, L2 = get_type_and_len(head)
            if not L2:
                print("Invalid tag length, could not proceed")
                break
            # print(T, L2)

            # Read image if we can
            if T in [20, 36]:
                im = read_pixels(bb, i + 6, T, L1)
                if im is not None:
                    images.append(im)
            elif T in [6, 21, 35, 90]:
                print("Ignoring JPEG image: cannot read JPEG.")
            else:
                pass  # Not an image tag

            # Detect end tag
            if T == 0:
                break

            # Next tag!
            i += L2

    finally:
        fp.close()

    # Done
    return images


# Backward compatibility; same public names as when this was images2swf.
writeSwf = write_swf
readSwf = read_swf