1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
"""
Import public NYC taxi and for-hire vehicle (Uber, Lyft, etc.) trip data into InfluxDB 2.0
https://github.com/toddwschneider/nyc-taxi-data
"""
import concurrent.futures
import io
import multiprocessing
from collections import OrderedDict
from csv import DictReader
from datetime import datetime
from multiprocessing import Value
from urllib.request import urlopen
import reactivex as rx
from reactivex import operators as ops
from influxdb_client import Point, InfluxDBClient, WriteOptions
from influxdb_client.client.write_api import WriteType
class ProgressTextIOWrapper(io.TextIOWrapper):
"""
TextIOWrapper that store progress of read.
"""
def __init__(self, *args, **kwargs):
io.TextIOWrapper.__init__(self, *args, **kwargs)
self.progress = None
pass
def readline(self, *args, **kwarg) -> str:
readline = super().readline(*args, **kwarg)
self.progress.value += len(readline)
return readline
class InfluxDBWriter(multiprocessing.Process):
"""
Writer that writes data in batches with 50_000 items.
"""
def __init__(self, queue):
multiprocessing.Process.__init__(self)
self.queue = queue
self.client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=False)
self.write_api = self.client.write_api(
write_options=WriteOptions(write_type=WriteType.batching, batch_size=50_000, flush_interval=10_000))
def run(self):
while True:
next_task = self.queue.get()
if next_task is None:
# Poison pill means terminate
self.terminate()
self.queue.task_done()
break
self.write_api.write(bucket="my-bucket", record=next_task)
self.queue.task_done()
def terminate(self) -> None:
proc_name = self.name
print()
print('Writer: flushing data...')
self.write_api.close()
self.client.close()
print('Writer: closed'.format(proc_name))
def parse_row(row: OrderedDict):
"""Parse row of CSV file into Point with structure:
taxi-trip-data,DOLocationID=152,PULocationID=79,dispatching_base_num=B02510 dropoff_datetime="2019-01-01 01:27:24" 1546304267000000000
CSV format:
dispatching_base_num,pickup_datetime,dropoff_datetime,PULocationID,DOLocationID,SR_Flag
B00001,2019-01-01 00:30:00,2019-01-01 02:51:55,,,
B00001,2019-01-01 00:45:00,2019-01-01 00:54:49,,,
B00001,2019-01-01 00:15:00,2019-01-01 00:54:52,,,
B00008,2019-01-01 00:19:00,2019-01-01 00:39:00,,,
B00008,2019-01-01 00:27:00,2019-01-01 00:37:00,,,
B00008,2019-01-01 00:48:00,2019-01-01 01:02:00,,,
B00008,2019-01-01 00:50:00,2019-01-01 00:59:00,,,
B00008,2019-01-01 00:51:00,2019-01-01 00:56:00,,,
B00009,2019-01-01 00:44:00,2019-01-01 00:58:00,,,
B00009,2019-01-01 00:19:00,2019-01-01 00:36:00,,,
B00009,2019-01-01 00:36:00,2019-01-01 00:49:00,,,
B00009,2019-01-01 00:26:00,2019-01-01 00:32:00,,,
...
:param row: the row of CSV file
:return: Parsed csv row to [Point]
"""
return Point("taxi-trip-data") \
.tag("dispatching_base_num", row['dispatching_base_num']) \
.tag("PULocationID", row['PULocationID']) \
.tag("DOLocationID", row['DOLocationID']) \
.tag("SR_Flag", row['SR_Flag']) \
.field("dropoff_datetime", row['dropoff_datetime']) \
.time(row['pickup_datetime']) \
.to_line_protocol()
def parse_rows(rows, total_size):
"""
Parse bunch of CSV rows into LineProtocol
:param total_size: Total size of file
:param rows: CSV rows
:return: List of line protocols
"""
_parsed_rows = list(map(parse_row, rows))
counter_.value += len(_parsed_rows)
if counter_.value % 10_000 == 0:
print('{0:8}{1}'.format(counter_.value, ' - {0:.2f} %'
.format(100 * float(progress_.value) / float(int(total_size))) if total_size else ""))
pass
queue_.put(_parsed_rows)
return None
def init_counter(counter, progress, queue):
"""
Initialize shared counter for display progress
"""
global counter_
counter_ = counter
global progress_
progress_ = progress
global queue_
queue_ = queue
if __name__ == "__main__":
"""
Create multiprocess shared environment
"""
queue_ = multiprocessing.Manager().Queue()
counter_ = Value('i', 0)
progress_ = Value('i', 0)
startTime = datetime.now()
url = "https://s3.amazonaws.com/nyc-tlc/trip+data/fhv_tripdata_2019-01.csv"
# url = "file:///Users/bednar/Developer/influxdata/influxdb-client-python/examples/fhv_tripdata_2019-01.csv"
"""
Open URL and for stream data
"""
response = urlopen(url)
if response.headers:
content_length = response.headers['Content-length']
io_wrapper = ProgressTextIOWrapper(response)
io_wrapper.progress = progress_
"""
Start writer as a new process
"""
writer = InfluxDBWriter(queue_)
writer.start()
"""
Create process pool for parallel encoding into LineProtocol
"""
cpu_count = multiprocessing.cpu_count()
with concurrent.futures.ProcessPoolExecutor(cpu_count, initializer=init_counter,
initargs=(counter_, progress_, queue_)) as executor:
"""
Converts incoming HTTP stream into sequence of LineProtocol
"""
data = rx \
.from_iterable(DictReader(io_wrapper)) \
.pipe(ops.buffer_with_count(10_000),
# Parse 10_000 rows into LineProtocol on subprocess
ops.flat_map(lambda rows: executor.submit(parse_rows, rows, content_length)))
"""
Write data into InfluxDB
"""
data.subscribe(on_next=lambda x: None, on_error=lambda ex: print(f'Unexpected error: {ex}'))
"""
Terminate Writer
"""
queue_.put(None)
queue_.join()
print()
print(f'Import finished in: {datetime.now() - startTime}')
print()
"""
Querying 10 pickups from dispatching 'B00008'
"""
query = 'from(bucket:"my-bucket")' \
'|> range(start: 2019-01-01T00:00:00Z, stop: now()) ' \
'|> filter(fn: (r) => r._measurement == "taxi-trip-data")' \
'|> filter(fn: (r) => r.dispatching_base_num == "B00008")' \
'|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")' \
'|> rename(columns: {_time: "pickup_datetime"})' \
'|> drop(columns: ["_start", "_stop"])|> limit(n:10, offset: 0)'
client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=False)
result = client.query_api().query(query=query)
"""
Processing results
"""
print()
print("=== Querying 10 pickups from dispatching 'B00008' ===")
print()
for table in result:
for record in table.records:
print(
f'Dispatching: {record["dispatching_base_num"]} pickup: {record["pickup_datetime"]} dropoff: {record["dropoff_datetime"]}')
"""
Close client
"""
client.close()
|