1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
"""Parsing response from InfluxDB to FluxStructures or DataFrame."""
import base64
import codecs
import csv as csv_parser
import warnings
from enum import Enum
from typing import List
from influxdb_client.client.flux_table import FluxTable, FluxColumn, FluxRecord, TableList
from influxdb_client.client.util.date_utils import get_date_helper
from influxdb_client.rest import _UTF_8_encoding
ANNOTATION_DEFAULT = "#default"
ANNOTATION_GROUP = "#group"
ANNOTATION_DATATYPE = "#datatype"
ANNOTATIONS = [ANNOTATION_DEFAULT, ANNOTATION_GROUP, ANNOTATION_DATATYPE]
class FluxQueryException(Exception):
"""The exception from InfluxDB."""
def __init__(self, message, reference) -> None:
"""Initialize defaults."""
self.message = message
self.reference = reference
class FluxCsvParserException(Exception):
"""The exception for not parsable data."""
pass
class FluxSerializationMode(Enum):
"""The type how we want to serialize data."""
tables = 1
stream = 2
dataFrame = 3
class FluxResponseMetadataMode(Enum):
"""The configuration for expected amount of metadata response from InfluxDB."""
full = 1
# useful for Invokable scripts
only_names = 2
class _FluxCsvParserMetadata(object):
def __init__(self):
self.table_index = 0
self.table_id = -1
self.start_new_table = False
self.table = None
self.groups = []
self.parsing_state_error = False
class FluxCsvParser(object):
"""Parse to processing response from InfluxDB to FluxStructures or DataFrame."""
def __init__(self, response, serialization_mode: FluxSerializationMode,
data_frame_index: List[str] = None, query_options=None,
response_metadata_mode: FluxResponseMetadataMode = FluxResponseMetadataMode.full) -> None:
"""
Initialize defaults.
:param response: HTTP response from a HTTP client.
Acceptable types: `urllib3.response.HTTPResponse`, `aiohttp.client_reqrep.ClientResponse`.
"""
self._response = response
self.tables = TableList()
self._serialization_mode = serialization_mode
self._response_metadata_mode = response_metadata_mode
self._data_frame_index = data_frame_index
self._data_frame_values = []
self._profilers = query_options.profilers if query_options is not None else None
self._profiler_callback = query_options.profiler_callback if query_options is not None else None
self._async_mode = True if 'ClientResponse' in type(response).__name__ else False
def _close(self):
self._response.close()
def __enter__(self):
"""Initialize CSV reader."""
# response can be exhausted by logger, so we have to use data that has already been read
if hasattr(self._response, 'closed') and self._response.closed:
from io import StringIO
self._reader = csv_parser.reader(StringIO(self._response.data.decode(_UTF_8_encoding)))
else:
self._reader = csv_parser.reader(codecs.iterdecode(self._response, _UTF_8_encoding))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Close HTTP response."""
self._close()
async def __aenter__(self) -> 'FluxCsvParser':
"""Initialize CSV reader."""
from aiocsv import AsyncReader
self._reader = AsyncReader(_StreamReaderToWithAsyncRead(self._response.content))
return self
async def __aexit__(self, exc_type, exc_val, exc_tb) -> None:
"""Shutdown the client."""
self.__exit__(exc_type, exc_val, exc_tb)
def generator(self):
"""Return Python generator."""
with self as parser:
for val in parser._parse_flux_response():
yield val
def generator_async(self):
"""Return Python async-generator."""
return self._parse_flux_response_async()
def _parse_flux_response(self):
metadata = _FluxCsvParserMetadata()
for csv in self._reader:
for val in self._parse_flux_response_row(metadata, csv):
yield val
# Return latest DataFrame
if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
df = self._prepare_data_frame()
if not self._is_profiler_table(metadata.table):
yield df
async def _parse_flux_response_async(self):
metadata = _FluxCsvParserMetadata()
try:
async for csv in self._reader:
for val in self._parse_flux_response_row(metadata, csv):
yield val
# Return latest DataFrame
if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
df = self._prepare_data_frame()
if not self._is_profiler_table(metadata.table):
yield df
finally:
self._close()
def _parse_flux_response_row(self, metadata, csv):
if len(csv) < 1:
# Skip empty line in results (new line is used as a delimiter between tables or table and error)
pass
elif "error" == csv[1] and "reference" == csv[2]:
metadata.parsing_state_error = True
else:
# Throw InfluxException with error response
if metadata.parsing_state_error:
error = csv[1]
reference_value = csv[2]
raise FluxQueryException(error, reference_value)
token = csv[0]
# start new table
if (token in ANNOTATIONS and not metadata.start_new_table) or \
(self._response_metadata_mode is FluxResponseMetadataMode.only_names and not metadata.table):
# Return already parsed DataFrame
if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
df = self._prepare_data_frame()
if not self._is_profiler_table(metadata.table):
yield df
metadata.start_new_table = True
metadata.table = FluxTable()
self._insert_table(metadata.table, metadata.table_index)
metadata.table_index = metadata.table_index + 1
metadata.table_id = -1
elif metadata.table is None:
raise FluxCsvParserException("Unable to parse CSV response. FluxTable definition was not found.")
# # datatype,string,long,dateTime:RFC3339,dateTime:RFC3339,dateTime:RFC3339,double,string,string,string
if ANNOTATION_DATATYPE == token:
self.add_data_types(metadata.table, csv)
elif ANNOTATION_GROUP == token:
metadata.groups = csv
elif ANNOTATION_DEFAULT == token:
self.add_default_empty_values(metadata.table, csv)
else:
# parse column names
if metadata.start_new_table:
# Invokable scripts doesn't supports dialect => all columns are string
if not metadata.table.columns and \
self._response_metadata_mode is FluxResponseMetadataMode.only_names:
self.add_data_types(metadata.table, list(map(lambda column: 'string', csv)))
metadata.groups = list(map(lambda column: 'false', csv))
self.add_groups(metadata.table, metadata.groups)
self.add_column_names_and_tags(metadata.table, csv)
metadata.start_new_table = False
# Create DataFrame with default values
if self._serialization_mode is FluxSerializationMode.dataFrame:
from ..extras import pd
labels = list(map(lambda it: it.label, metadata.table.columns))
self._data_frame = pd.DataFrame(data=[], columns=labels, index=None)
pass
else:
# to int converions todo
current_id = int(csv[2])
if metadata.table_id == -1:
metadata.table_id = current_id
if metadata.table_id != current_id:
# create new table with previous column headers settings
flux_columns = metadata.table.columns
metadata.table = FluxTable()
metadata.table.columns.extend(flux_columns)
self._insert_table(metadata.table, metadata.table_index)
metadata.table_index = metadata.table_index + 1
metadata.table_id = current_id
flux_record = self.parse_record(metadata.table_index - 1, metadata.table, csv)
if self._is_profiler_record(flux_record):
self._print_profiler_info(flux_record)
else:
if self._serialization_mode is FluxSerializationMode.tables:
self.tables[metadata.table_index - 1].records.append(flux_record)
if self._serialization_mode is FluxSerializationMode.stream:
yield flux_record
if self._serialization_mode is FluxSerializationMode.dataFrame:
self._data_frame_values.append(flux_record.values)
pass
def _prepare_data_frame(self):
from ..extras import pd
# We have to create temporary DataFrame because we want to preserve default column values
_temp_df = pd.DataFrame(self._data_frame_values)
self._data_frame_values = []
# Custom DataFrame index
if self._data_frame_index:
self._data_frame = self._data_frame.set_index(self._data_frame_index)
_temp_df = _temp_df.set_index(self._data_frame_index)
# Append data
return pd.concat([self._data_frame.astype(_temp_df.dtypes), _temp_df])
def parse_record(self, table_index, table, csv):
"""Parse one record."""
record = FluxRecord(table_index)
for fluxColumn in table.columns:
column_name = fluxColumn.label
str_val = csv[fluxColumn.index + 1]
record.values[column_name] = self._to_value(str_val, fluxColumn)
record.row.append(record.values[column_name])
return record
def _to_value(self, str_val, column):
if str_val == '' or str_val is None:
default_value = column.default_value
if default_value == '' or default_value is None:
if self._serialization_mode is FluxSerializationMode.dataFrame:
from ..extras import np
return self._to_value(np.nan, column)
return None
return self._to_value(default_value, column)
if "string" == column.data_type:
return str_val
if "boolean" == column.data_type:
return "true" == str_val
if "unsignedLong" == column.data_type or "long" == column.data_type:
return int(str_val)
if "double" == column.data_type:
return float(str_val)
if "base64Binary" == column.data_type:
return base64.b64decode(str_val)
if "dateTime:RFC3339" == column.data_type or "dateTime:RFC3339Nano" == column.data_type:
return get_date_helper().parse_date(str_val)
if "duration" == column.data_type:
# todo better type ?
return int(str_val)
@staticmethod
def add_data_types(table, data_types):
"""Add data types to columns."""
for index in range(1, len(data_types)):
column_def = FluxColumn(index=index - 1, data_type=data_types[index])
table.columns.append(column_def)
@staticmethod
def add_groups(table, csv):
"""Add group keys to columns."""
i = 1
for column in table.columns:
column.group = csv[i] == "true"
i += 1
@staticmethod
def add_default_empty_values(table, default_values):
"""Add default values to columns."""
i = 1
for column in table.columns:
column.default_value = default_values[i]
i += 1
@staticmethod
def add_column_names_and_tags(table, csv):
"""Add labels to columns."""
if len(csv) != len(set(csv)):
message = f"""The response contains columns with duplicated names: '{csv}'.
You should use the 'record.row' to access your data instead of 'record.values' dictionary.
"""
warnings.warn(message, UserWarning)
print(message)
i = 1
for column in table.columns:
column.label = csv[i]
i += 1
def _insert_table(self, table, table_index):
if self._serialization_mode is FluxSerializationMode.tables:
self.tables.insert(table_index, table)
def _is_profiler_record(self, flux_record: FluxRecord) -> bool:
if not self._profilers:
return False
for profiler in self._profilers:
if "_measurement" in flux_record.values and flux_record["_measurement"] == "profiler/" + profiler:
return True
return False
def _is_profiler_table(self, table: FluxTable) -> bool:
if not self._profilers:
return False
return any(filter(lambda column: (column.default_value == "_profiler" and column.label == "result"),
table.columns))
def table_list(self) -> TableList:
"""Get the list of flux tables."""
if not self._profilers:
return self.tables
else:
return TableList(filter(lambda table: not self._is_profiler_table(table), self.tables))
def _print_profiler_info(self, flux_record: FluxRecord):
if flux_record.get_measurement().startswith("profiler/"):
if self._profiler_callback:
self._profiler_callback(flux_record)
else:
msg = "Profiler: " + flux_record.get_measurement()
print("\n" + len(msg) * "=")
print(msg)
print(len(msg) * "=")
for name in flux_record.values:
val = flux_record[name]
if isinstance(val, str) and len(val) > 50:
print(f"{name:<20}: \n\n{val}")
elif val is not None:
print(f"{name:<20}: {val:<20}")
class _StreamReaderToWithAsyncRead:
def __init__(self, response):
self.response = response
self.decoder = codecs.getincrementaldecoder(_UTF_8_encoding)()
async def read(self, size: int) -> str:
raw_bytes = (await self.response.read(size))
if not raw_bytes:
return self.decoder.decode(b'', final=True)
return self.decoder.decode(raw_bytes, final=False)
|