File: flux_csv_parser.py

package info (click to toggle)
python-influxdb-client 1.40.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,216 kB
  • sloc: python: 60,236; sh: 64; makefile: 53
file content (396 lines) | stat: -rw-r--r-- 15,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""Parsing response from InfluxDB to FluxStructures or DataFrame."""


import base64
import codecs
import csv as csv_parser
import warnings
from enum import Enum
from typing import List

from influxdb_client.client.flux_table import FluxTable, FluxColumn, FluxRecord, TableList
from influxdb_client.client.util.date_utils import get_date_helper
from influxdb_client.rest import _UTF_8_encoding

ANNOTATION_DEFAULT = "#default"
ANNOTATION_GROUP = "#group"
ANNOTATION_DATATYPE = "#datatype"
ANNOTATIONS = [ANNOTATION_DEFAULT, ANNOTATION_GROUP, ANNOTATION_DATATYPE]


class FluxQueryException(Exception):
    """The exception from InfluxDB."""

    def __init__(self, message, reference) -> None:
        """Initialize defaults."""
        self.message = message
        self.reference = reference


class FluxCsvParserException(Exception):
    """The exception for not parsable data."""

    pass


class FluxSerializationMode(Enum):
    """The type how we want to serialize data."""

    tables = 1
    stream = 2
    dataFrame = 3


class FluxResponseMetadataMode(Enum):
    """The configuration for expected amount of metadata response from InfluxDB."""

    full = 1
    # useful for Invokable scripts
    only_names = 2


class _FluxCsvParserMetadata(object):
    def __init__(self):
        self.table_index = 0
        self.table_id = -1
        self.start_new_table = False
        self.table = None
        self.groups = []
        self.parsing_state_error = False


class FluxCsvParser(object):
    """Parse to processing response from InfluxDB to FluxStructures or DataFrame."""

    def __init__(self, response, serialization_mode: FluxSerializationMode,
                 data_frame_index: List[str] = None, query_options=None,
                 response_metadata_mode: FluxResponseMetadataMode = FluxResponseMetadataMode.full) -> None:
        """
        Initialize defaults.

        :param response: HTTP response from a HTTP client.
                         Acceptable types: `urllib3.response.HTTPResponse`, `aiohttp.client_reqrep.ClientResponse`.
        """
        self._response = response
        self.tables = TableList()
        self._serialization_mode = serialization_mode
        self._response_metadata_mode = response_metadata_mode
        self._data_frame_index = data_frame_index
        self._data_frame_values = []
        self._profilers = query_options.profilers if query_options is not None else None
        self._profiler_callback = query_options.profiler_callback if query_options is not None else None
        self._async_mode = True if 'ClientResponse' in type(response).__name__ else False

    def _close(self):
        self._response.close()

    def __enter__(self):
        """Initialize CSV reader."""
        # response can be exhausted by logger, so we have to use data that has already been read
        if hasattr(self._response, 'closed') and self._response.closed:
            from io import StringIO
            self._reader = csv_parser.reader(StringIO(self._response.data.decode(_UTF_8_encoding)))
        else:
            self._reader = csv_parser.reader(codecs.iterdecode(self._response, _UTF_8_encoding))
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        """Close HTTP response."""
        self._close()

    async def __aenter__(self) -> 'FluxCsvParser':
        """Initialize CSV reader."""
        from aiocsv import AsyncReader
        self._reader = AsyncReader(_StreamReaderToWithAsyncRead(self._response.content))

        return self

    async def __aexit__(self, exc_type, exc_val, exc_tb) -> None:
        """Shutdown the client."""
        self.__exit__(exc_type, exc_val, exc_tb)

    def generator(self):
        """Return Python generator."""
        with self as parser:
            for val in parser._parse_flux_response():
                yield val

    def generator_async(self):
        """Return Python async-generator."""
        return self._parse_flux_response_async()

    def _parse_flux_response(self):
        metadata = _FluxCsvParserMetadata()

        for csv in self._reader:
            for val in self._parse_flux_response_row(metadata, csv):
                yield val

        # Return latest DataFrame
        if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
            df = self._prepare_data_frame()
            if not self._is_profiler_table(metadata.table):
                yield df

    async def _parse_flux_response_async(self):
        metadata = _FluxCsvParserMetadata()

        try:
            async for csv in self._reader:
                for val in self._parse_flux_response_row(metadata, csv):
                    yield val

            # Return latest DataFrame
            if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
                df = self._prepare_data_frame()
                if not self._is_profiler_table(metadata.table):
                    yield df
        finally:
            self._close()

    def _parse_flux_response_row(self, metadata, csv):
        if len(csv) < 1:
            # Skip empty line in results (new line is used as a delimiter between tables or table and error)
            pass

        elif "error" == csv[1] and "reference" == csv[2]:
            metadata.parsing_state_error = True

        else:
            # Throw  InfluxException with error response
            if metadata.parsing_state_error:
                error = csv[1]
                reference_value = csv[2]
                raise FluxQueryException(error, reference_value)

            token = csv[0]
            # start new table
            if (token in ANNOTATIONS and not metadata.start_new_table) or \
                    (self._response_metadata_mode is FluxResponseMetadataMode.only_names and not metadata.table):

                # Return already parsed DataFrame
                if (self._serialization_mode is FluxSerializationMode.dataFrame) & hasattr(self, '_data_frame'):
                    df = self._prepare_data_frame()
                    if not self._is_profiler_table(metadata.table):
                        yield df

                metadata.start_new_table = True
                metadata.table = FluxTable()
                self._insert_table(metadata.table, metadata.table_index)
                metadata.table_index = metadata.table_index + 1
                metadata.table_id = -1
            elif metadata.table is None:
                raise FluxCsvParserException("Unable to parse CSV response. FluxTable definition was not found.")

            #  # datatype,string,long,dateTime:RFC3339,dateTime:RFC3339,dateTime:RFC3339,double,string,string,string
            if ANNOTATION_DATATYPE == token:
                self.add_data_types(metadata.table, csv)

            elif ANNOTATION_GROUP == token:
                metadata.groups = csv

            elif ANNOTATION_DEFAULT == token:
                self.add_default_empty_values(metadata.table, csv)

            else:
                # parse column names
                if metadata.start_new_table:
                    # Invokable scripts doesn't supports dialect => all columns are string
                    if not metadata.table.columns and \
                            self._response_metadata_mode is FluxResponseMetadataMode.only_names:
                        self.add_data_types(metadata.table, list(map(lambda column: 'string', csv)))
                        metadata.groups = list(map(lambda column: 'false', csv))
                    self.add_groups(metadata.table, metadata.groups)
                    self.add_column_names_and_tags(metadata.table, csv)
                    metadata.start_new_table = False
                    # Create DataFrame with default values
                    if self._serialization_mode is FluxSerializationMode.dataFrame:
                        from ..extras import pd
                        labels = list(map(lambda it: it.label, metadata.table.columns))
                        self._data_frame = pd.DataFrame(data=[], columns=labels, index=None)
                        pass
                else:

                    # to int converions todo
                    current_id = int(csv[2])
                    if metadata.table_id == -1:
                        metadata.table_id = current_id

                    if metadata.table_id != current_id:
                        # create    new        table       with previous column headers settings
                        flux_columns = metadata.table.columns
                        metadata.table = FluxTable()
                        metadata.table.columns.extend(flux_columns)
                        self._insert_table(metadata.table, metadata.table_index)
                        metadata.table_index = metadata.table_index + 1
                        metadata.table_id = current_id

                    flux_record = self.parse_record(metadata.table_index - 1, metadata.table, csv)

                    if self._is_profiler_record(flux_record):
                        self._print_profiler_info(flux_record)
                    else:
                        if self._serialization_mode is FluxSerializationMode.tables:
                            self.tables[metadata.table_index - 1].records.append(flux_record)

                        if self._serialization_mode is FluxSerializationMode.stream:
                            yield flux_record

                        if self._serialization_mode is FluxSerializationMode.dataFrame:
                            self._data_frame_values.append(flux_record.values)
                            pass

    def _prepare_data_frame(self):
        from ..extras import pd

        # We have to create temporary DataFrame because we want to preserve default column values
        _temp_df = pd.DataFrame(self._data_frame_values)
        self._data_frame_values = []

        # Custom DataFrame index
        if self._data_frame_index:
            self._data_frame = self._data_frame.set_index(self._data_frame_index)
            _temp_df = _temp_df.set_index(self._data_frame_index)

        # Append data
        return pd.concat([self._data_frame.astype(_temp_df.dtypes), _temp_df])

    def parse_record(self, table_index, table, csv):
        """Parse one record."""
        record = FluxRecord(table_index)

        for fluxColumn in table.columns:
            column_name = fluxColumn.label
            str_val = csv[fluxColumn.index + 1]
            record.values[column_name] = self._to_value(str_val, fluxColumn)
            record.row.append(record.values[column_name])

        return record

    def _to_value(self, str_val, column):

        if str_val == '' or str_val is None:
            default_value = column.default_value
            if default_value == '' or default_value is None:
                if self._serialization_mode is FluxSerializationMode.dataFrame:
                    from ..extras import np
                    return self._to_value(np.nan, column)
                return None
            return self._to_value(default_value, column)

        if "string" == column.data_type:
            return str_val

        if "boolean" == column.data_type:
            return "true" == str_val

        if "unsignedLong" == column.data_type or "long" == column.data_type:
            return int(str_val)

        if "double" == column.data_type:
            return float(str_val)

        if "base64Binary" == column.data_type:
            return base64.b64decode(str_val)

        if "dateTime:RFC3339" == column.data_type or "dateTime:RFC3339Nano" == column.data_type:
            return get_date_helper().parse_date(str_val)

        if "duration" == column.data_type:
            # todo better type ?
            return int(str_val)

    @staticmethod
    def add_data_types(table, data_types):
        """Add data types to columns."""
        for index in range(1, len(data_types)):
            column_def = FluxColumn(index=index - 1, data_type=data_types[index])
            table.columns.append(column_def)

    @staticmethod
    def add_groups(table, csv):
        """Add group keys to columns."""
        i = 1
        for column in table.columns:
            column.group = csv[i] == "true"
            i += 1

    @staticmethod
    def add_default_empty_values(table, default_values):
        """Add default values to columns."""
        i = 1
        for column in table.columns:
            column.default_value = default_values[i]
            i += 1

    @staticmethod
    def add_column_names_and_tags(table, csv):
        """Add labels to columns."""
        if len(csv) != len(set(csv)):
            message = f"""The response contains columns with duplicated names: '{csv}'.

You should use the 'record.row' to access your data instead of 'record.values' dictionary.
"""
            warnings.warn(message, UserWarning)
            print(message)
        i = 1
        for column in table.columns:
            column.label = csv[i]
            i += 1

    def _insert_table(self, table, table_index):
        if self._serialization_mode is FluxSerializationMode.tables:
            self.tables.insert(table_index, table)

    def _is_profiler_record(self, flux_record: FluxRecord) -> bool:
        if not self._profilers:
            return False

        for profiler in self._profilers:
            if "_measurement" in flux_record.values and flux_record["_measurement"] == "profiler/" + profiler:
                return True

        return False

    def _is_profiler_table(self, table: FluxTable) -> bool:

        if not self._profilers:
            return False

        return any(filter(lambda column: (column.default_value == "_profiler" and column.label == "result"),
                          table.columns))

    def table_list(self) -> TableList:
        """Get the list of flux tables."""
        if not self._profilers:
            return self.tables
        else:
            return TableList(filter(lambda table: not self._is_profiler_table(table), self.tables))

    def _print_profiler_info(self, flux_record: FluxRecord):
        if flux_record.get_measurement().startswith("profiler/"):
            if self._profiler_callback:
                self._profiler_callback(flux_record)
            else:
                msg = "Profiler: " + flux_record.get_measurement()
                print("\n" + len(msg) * "=")
                print(msg)
                print(len(msg) * "=")
                for name in flux_record.values:
                    val = flux_record[name]
                    if isinstance(val, str) and len(val) > 50:
                        print(f"{name:<20}: \n\n{val}")
                    elif val is not None:
                        print(f"{name:<20}: {val:<20}")


class _StreamReaderToWithAsyncRead:
    def __init__(self, response):
        self.response = response
        self.decoder = codecs.getincrementaldecoder(_UTF_8_encoding)()

    async def read(self, size: int) -> str:
        raw_bytes = (await self.response.read(size))
        if not raw_bytes:
            return self.decoder.decode(b'', final=True)
        return self.decoder.decode(raw_bytes, final=False)