File: dataframe_serializer.py

package info (click to toggle)
python-influxdb-client 1.40.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,216 kB
  • sloc: python: 60,236; sh: 64; makefile: 53
file content (297 lines) | stat: -rw-r--r-- 14,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Functions for serialize Pandas DataFrame.

Much of the code here is inspired by that in the aioinflux packet found here: https://github.com/gusutabopb/aioinflux
"""

import logging
import math
import re

from influxdb_client import WritePrecision
from influxdb_client.client.write.point import _ESCAPE_KEY, _ESCAPE_STRING, _ESCAPE_MEASUREMENT, DEFAULT_WRITE_PRECISION

logger = logging.getLogger('influxdb_client.client.write.dataframe_serializer')


def _itertuples(data_frame):
    cols = [data_frame.iloc[:, k] for k in range(len(data_frame.columns))]
    return zip(data_frame.index, *cols)


def _not_nan(x):
    return x == x


def _any_not_nan(p, indexes):
    return any(map(lambda x: _not_nan(p[x]), indexes))


class DataframeSerializer:
    """Serialize DataFrame into LineProtocols."""

    def __init__(self, data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, chunk_size: int = None,
                 **kwargs) -> None:
        """
        Init serializer.

        :param data_frame: Pandas DataFrame to serialize
        :param point_settings: Default Tags
        :param precision: The precision for the unix timestamps within the body line-protocol.
        :param chunk_size: The size of chunk for serializing into chunks.
        :key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
        :key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
        :key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
                                          formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
                                          or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
        :key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
        """  # noqa: E501
        # This function is hard to understand but for good reason:
        # the approach used here is considerably more efficient
        # than the alternatives.
        #
        # We build up a Python expression that efficiently converts a data point
        # tuple into line-protocol entry, and then evaluate the expression
        # as a lambda so that we can call it. This avoids the overhead of
        # invoking a function on every data value - we only have one function
        # call per row instead. The expression consists of exactly
        # one f-string, so we build up the parts of it as segments
        # that are concatenated together to make the full f-string inside
        # the lambda.
        #
        # Things are made a little more complex because fields and tags with NaN
        # values and empty tags are omitted from the generated line-protocol
        # output.
        #
        # As an example, say we have a data frame with two value columns:
        #        a float
        #        b int
        #
        # This will generate a lambda expression to be evaluated that looks like
        # this:
        #
        #     lambda p: f"""{measurement_name} {keys[0]}={p[1]},{keys[1]}={p[2]}i {p[0].value}"""
        #
        # This lambda is then executed for each row p.
        #
        # When NaNs are present, the expression looks like this (split
        # across two lines to satisfy the code-style checker)
        #
        #    lambda p: f"""{measurement_name} {"" if math.isnan(p[1])
        #    else f"{keys[0]}={p[1]}"},{keys[1]}={p[2]}i {p[0].value}"""
        #
        # When there's a NaN value in column a, we'll end up with a comma at the start of the
        # fields, so we run a regexp substitution after generating the line-protocol entries
        # to remove this.
        #
        # We're careful to run these potentially costly extra steps only when NaN values actually
        # exist in the data.

        from ...extras import pd, np
        if not isinstance(data_frame, pd.DataFrame):
            raise TypeError('Must be DataFrame, but type was: {0}.'
                            .format(type(data_frame)))

        data_frame_measurement_name = kwargs.get('data_frame_measurement_name')
        if data_frame_measurement_name is None:
            raise TypeError('"data_frame_measurement_name" is a Required Argument')

        timestamp_column = kwargs.get('data_frame_timestamp_column', None)
        timestamp_timezone = kwargs.get('data_frame_timestamp_timezone', None)
        data_frame = data_frame.copy(deep=False)
        data_frame_timestamp = data_frame.index if timestamp_column is None else data_frame[timestamp_column]
        if isinstance(data_frame_timestamp, pd.PeriodIndex):
            data_frame_timestamp = data_frame_timestamp.to_timestamp()
        else:
            # TODO: this is almost certainly not what you want
            # when the index is the default RangeIndex.
            # Instead, it would probably be better to leave
            # out the timestamp unless a time column is explicitly
            # enabled.
            data_frame_timestamp = pd.to_datetime(data_frame_timestamp, unit=precision)

        if timestamp_timezone:
            if isinstance(data_frame_timestamp, pd.DatetimeIndex):
                data_frame_timestamp = data_frame_timestamp.tz_localize(timestamp_timezone)
            else:
                data_frame_timestamp = data_frame_timestamp.dt.tz_localize(timestamp_timezone)

        if hasattr(data_frame_timestamp, 'tzinfo') and data_frame_timestamp.tzinfo is None:
            data_frame_timestamp = data_frame_timestamp.tz_localize('UTC')
        if timestamp_column is None:
            data_frame.index = data_frame_timestamp
        else:
            data_frame[timestamp_column] = data_frame_timestamp

        data_frame_tag_columns = kwargs.get('data_frame_tag_columns')
        data_frame_tag_columns = set(data_frame_tag_columns or [])

        # keys holds a list of string keys.
        keys = []
        # tags holds a list of tag f-string segments ordered alphabetically by tag key.
        tags = []
        # fields holds a list of field f-string segments  ordered alphebetically by field key
        fields = []
        # field_indexes holds the index into each row of all the fields.
        field_indexes = []

        if point_settings.defaultTags:
            for key, value in point_settings.defaultTags.items():
                # Avoid overwriting existing data if there's a column
                # that already exists with the default tag's name.
                # Note: when a new column is added, the old DataFrame
                # that we've made a shallow copy of is unaffected.
                # TODO: when there are NaN or empty values in
                # the column, we could make a deep copy of the
                # data and fill in those values with the default tag value.
                if key not in data_frame.columns:
                    data_frame[key] = value
                    data_frame_tag_columns.add(key)

        # Get a list of all the columns sorted by field/tag key.
        # We want to iterate through the columns in sorted order
        # so that we know when we're on the first field so we
        # can know whether a comma is needed for that
        # field.
        columns = sorted(enumerate(data_frame.dtypes.items()), key=lambda col: col[1][0])

        # null_columns has a bool value for each column holding
        # whether that column contains any null (NaN or None) values.
        null_columns = data_frame.isnull().any()
        timestamp_index = 0

        # Iterate through the columns building up the expression for each column.
        for index, (key, value) in columns:
            key = str(key)
            key_format = f'{{keys[{len(keys)}]}}'
            keys.append(key.translate(_ESCAPE_KEY))
            # The field index is one more than the column index because the
            # time index is at column zero in the finally zipped-together
            # result columns.
            field_index = index + 1
            val_format = f'p[{field_index}]'

            if key in data_frame_tag_columns:
                # This column is a tag column.
                if null_columns.iloc[index]:
                    key_value = f"""{{
                            '' if {val_format} == '' or type({val_format}) == float and math.isnan({val_format}) else
                            f',{key_format}={{str({val_format}).translate(_ESCAPE_STRING)}}'
                        }}"""
                else:
                    key_value = f',{key_format}={{str({val_format}).translate(_ESCAPE_KEY)}}'
                tags.append(key_value)
                continue
            elif timestamp_column is not None and key in timestamp_column:
                timestamp_index = field_index
                continue

            # This column is a field column.
            # Note: no comma separator is needed for the first field.
            # It's important to omit it because when the first
            # field column has no nulls, we don't run the comma-removal
            # regexp substitution step.
            sep = '' if len(field_indexes) == 0 else ','
            if issubclass(value.type, np.integer):
                field_value = f"{sep}{key_format}={{{val_format}}}i"
            elif issubclass(value.type, np.bool_):
                field_value = f'{sep}{key_format}={{{val_format}}}'
            elif issubclass(value.type, np.floating):
                if null_columns.iloc[index]:
                    field_value = f"""{{"" if math.isnan({val_format}) else f"{sep}{key_format}={{{val_format}}}"}}"""
                else:
                    field_value = f'{sep}{key_format}={{{val_format}}}'
            else:
                if null_columns.iloc[index]:
                    field_value = f"""{{
                            '' if type({val_format}) == float and math.isnan({val_format}) else
                            f'{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'
                        }}"""
                else:
                    field_value = f'''{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'''
            field_indexes.append(field_index)
            fields.append(field_value)

        measurement_name = str(data_frame_measurement_name).translate(_ESCAPE_MEASUREMENT)

        tags = ''.join(tags)
        fields = ''.join(fields)
        timestamp = '{p[%s].value}' % timestamp_index
        if precision == WritePrecision.US:
            timestamp = '{int(p[%s].value / 1e3)}' % timestamp_index
        elif precision == WritePrecision.MS:
            timestamp = '{int(p[%s].value / 1e6)}' % timestamp_index
        elif precision == WritePrecision.S:
            timestamp = '{int(p[%s].value / 1e9)}' % timestamp_index

        f = eval(f'lambda p: f"""{{measurement_name}}{tags} {fields} {timestamp}"""', {
            'measurement_name': measurement_name,
            '_ESCAPE_KEY': _ESCAPE_KEY,
            '_ESCAPE_STRING': _ESCAPE_STRING,
            'keys': keys,
            'math': math,
        })

        for k, v in dict(data_frame.dtypes).items():
            if k in data_frame_tag_columns:
                data_frame[k].replace('', np.nan, inplace=True)

        self.data_frame = data_frame
        self.f = f
        self.field_indexes = field_indexes
        self.first_field_maybe_null = null_columns.iloc[field_indexes[0] - 1]

        #
        # prepare chunks
        #
        if chunk_size is not None:
            self.number_of_chunks = int(math.ceil(len(data_frame) / float(chunk_size)))
            self.chunk_size = chunk_size
        else:
            self.number_of_chunks = None

    def serialize(self, chunk_idx: int = None):
        """
        Serialize chunk into LineProtocols.

        :param chunk_idx: The index of chunk to serialize. If `None` then serialize whole dataframe.
        """
        if chunk_idx is None:
            chunk = self.data_frame
        else:
            logger.debug("Serialize chunk %s/%s ...", chunk_idx + 1, self.number_of_chunks)
            chunk = self.data_frame[chunk_idx * self.chunk_size:(chunk_idx + 1) * self.chunk_size]

        if self.first_field_maybe_null:
            # When the first field is null (None/NaN), we'll have
            # a spurious leading comma which needs to be removed.
            lp = (re.sub('^(( |[^ ])* ),([a-zA-Z0-9])(.*)', '\\1\\3\\4', self.f(p))
                  for p in filter(lambda x: _any_not_nan(x, self.field_indexes), _itertuples(chunk)))
            return list(lp)
        else:
            return list(map(self.f, _itertuples(chunk)))

    def number_of_chunks(self):
        """
        Return the number of chunks.

        :return: number of chunks or None if chunk_size is not specified.
        """
        return self.number_of_chunks


def data_frame_to_list_of_points(data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, **kwargs):
    """
    Serialize DataFrame into LineProtocols.

    :param data_frame: Pandas DataFrame to serialize
    :param point_settings: Default Tags
    :param precision: The precision for the unix timestamps within the body line-protocol.
    :key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
    :key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
    :key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
                                      formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
                                      or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
    :key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
    """  # noqa: E501
    return DataframeSerializer(data_frame, point_settings, precision, **kwargs).serialize()