1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
"""
Functions for serialize Pandas DataFrame.
Much of the code here is inspired by that in the aioinflux packet found here: https://github.com/gusutabopb/aioinflux
"""
import logging
import math
import re
from influxdb_client import WritePrecision
from influxdb_client.client.write.point import _ESCAPE_KEY, _ESCAPE_STRING, _ESCAPE_MEASUREMENT, DEFAULT_WRITE_PRECISION
logger = logging.getLogger('influxdb_client.client.write.dataframe_serializer')
def _itertuples(data_frame):
cols = [data_frame.iloc[:, k] for k in range(len(data_frame.columns))]
return zip(data_frame.index, *cols)
def _not_nan(x):
return x == x
def _any_not_nan(p, indexes):
return any(map(lambda x: _not_nan(p[x]), indexes))
class DataframeSerializer:
"""Serialize DataFrame into LineProtocols."""
def __init__(self, data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, chunk_size: int = None,
**kwargs) -> None:
"""
Init serializer.
:param data_frame: Pandas DataFrame to serialize
:param point_settings: Default Tags
:param precision: The precision for the unix timestamps within the body line-protocol.
:param chunk_size: The size of chunk for serializing into chunks.
:key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
:key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
:key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
:key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
""" # noqa: E501
# This function is hard to understand but for good reason:
# the approach used here is considerably more efficient
# than the alternatives.
#
# We build up a Python expression that efficiently converts a data point
# tuple into line-protocol entry, and then evaluate the expression
# as a lambda so that we can call it. This avoids the overhead of
# invoking a function on every data value - we only have one function
# call per row instead. The expression consists of exactly
# one f-string, so we build up the parts of it as segments
# that are concatenated together to make the full f-string inside
# the lambda.
#
# Things are made a little more complex because fields and tags with NaN
# values and empty tags are omitted from the generated line-protocol
# output.
#
# As an example, say we have a data frame with two value columns:
# a float
# b int
#
# This will generate a lambda expression to be evaluated that looks like
# this:
#
# lambda p: f"""{measurement_name} {keys[0]}={p[1]},{keys[1]}={p[2]}i {p[0].value}"""
#
# This lambda is then executed for each row p.
#
# When NaNs are present, the expression looks like this (split
# across two lines to satisfy the code-style checker)
#
# lambda p: f"""{measurement_name} {"" if math.isnan(p[1])
# else f"{keys[0]}={p[1]}"},{keys[1]}={p[2]}i {p[0].value}"""
#
# When there's a NaN value in column a, we'll end up with a comma at the start of the
# fields, so we run a regexp substitution after generating the line-protocol entries
# to remove this.
#
# We're careful to run these potentially costly extra steps only when NaN values actually
# exist in the data.
from ...extras import pd, np
if not isinstance(data_frame, pd.DataFrame):
raise TypeError('Must be DataFrame, but type was: {0}.'
.format(type(data_frame)))
data_frame_measurement_name = kwargs.get('data_frame_measurement_name')
if data_frame_measurement_name is None:
raise TypeError('"data_frame_measurement_name" is a Required Argument')
timestamp_column = kwargs.get('data_frame_timestamp_column', None)
timestamp_timezone = kwargs.get('data_frame_timestamp_timezone', None)
data_frame = data_frame.copy(deep=False)
data_frame_timestamp = data_frame.index if timestamp_column is None else data_frame[timestamp_column]
if isinstance(data_frame_timestamp, pd.PeriodIndex):
data_frame_timestamp = data_frame_timestamp.to_timestamp()
else:
# TODO: this is almost certainly not what you want
# when the index is the default RangeIndex.
# Instead, it would probably be better to leave
# out the timestamp unless a time column is explicitly
# enabled.
data_frame_timestamp = pd.to_datetime(data_frame_timestamp, unit=precision)
if timestamp_timezone:
if isinstance(data_frame_timestamp, pd.DatetimeIndex):
data_frame_timestamp = data_frame_timestamp.tz_localize(timestamp_timezone)
else:
data_frame_timestamp = data_frame_timestamp.dt.tz_localize(timestamp_timezone)
if hasattr(data_frame_timestamp, 'tzinfo') and data_frame_timestamp.tzinfo is None:
data_frame_timestamp = data_frame_timestamp.tz_localize('UTC')
if timestamp_column is None:
data_frame.index = data_frame_timestamp
else:
data_frame[timestamp_column] = data_frame_timestamp
data_frame_tag_columns = kwargs.get('data_frame_tag_columns')
data_frame_tag_columns = set(data_frame_tag_columns or [])
# keys holds a list of string keys.
keys = []
# tags holds a list of tag f-string segments ordered alphabetically by tag key.
tags = []
# fields holds a list of field f-string segments ordered alphebetically by field key
fields = []
# field_indexes holds the index into each row of all the fields.
field_indexes = []
if point_settings.defaultTags:
for key, value in point_settings.defaultTags.items():
# Avoid overwriting existing data if there's a column
# that already exists with the default tag's name.
# Note: when a new column is added, the old DataFrame
# that we've made a shallow copy of is unaffected.
# TODO: when there are NaN or empty values in
# the column, we could make a deep copy of the
# data and fill in those values with the default tag value.
if key not in data_frame.columns:
data_frame[key] = value
data_frame_tag_columns.add(key)
# Get a list of all the columns sorted by field/tag key.
# We want to iterate through the columns in sorted order
# so that we know when we're on the first field so we
# can know whether a comma is needed for that
# field.
columns = sorted(enumerate(data_frame.dtypes.items()), key=lambda col: col[1][0])
# null_columns has a bool value for each column holding
# whether that column contains any null (NaN or None) values.
null_columns = data_frame.isnull().any()
timestamp_index = 0
# Iterate through the columns building up the expression for each column.
for index, (key, value) in columns:
key = str(key)
key_format = f'{{keys[{len(keys)}]}}'
keys.append(key.translate(_ESCAPE_KEY))
# The field index is one more than the column index because the
# time index is at column zero in the finally zipped-together
# result columns.
field_index = index + 1
val_format = f'p[{field_index}]'
if key in data_frame_tag_columns:
# This column is a tag column.
if null_columns.iloc[index]:
key_value = f"""{{
'' if {val_format} == '' or type({val_format}) == float and math.isnan({val_format}) else
f',{key_format}={{str({val_format}).translate(_ESCAPE_STRING)}}'
}}"""
else:
key_value = f',{key_format}={{str({val_format}).translate(_ESCAPE_KEY)}}'
tags.append(key_value)
continue
elif timestamp_column is not None and key in timestamp_column:
timestamp_index = field_index
continue
# This column is a field column.
# Note: no comma separator is needed for the first field.
# It's important to omit it because when the first
# field column has no nulls, we don't run the comma-removal
# regexp substitution step.
sep = '' if len(field_indexes) == 0 else ','
if issubclass(value.type, np.integer):
field_value = f"{sep}{key_format}={{{val_format}}}i"
elif issubclass(value.type, np.bool_):
field_value = f'{sep}{key_format}={{{val_format}}}'
elif issubclass(value.type, np.floating):
if null_columns.iloc[index]:
field_value = f"""{{"" if math.isnan({val_format}) else f"{sep}{key_format}={{{val_format}}}"}}"""
else:
field_value = f'{sep}{key_format}={{{val_format}}}'
else:
if null_columns.iloc[index]:
field_value = f"""{{
'' if type({val_format}) == float and math.isnan({val_format}) else
f'{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'
}}"""
else:
field_value = f'''{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'''
field_indexes.append(field_index)
fields.append(field_value)
measurement_name = str(data_frame_measurement_name).translate(_ESCAPE_MEASUREMENT)
tags = ''.join(tags)
fields = ''.join(fields)
timestamp = '{p[%s].value}' % timestamp_index
if precision == WritePrecision.US:
timestamp = '{int(p[%s].value / 1e3)}' % timestamp_index
elif precision == WritePrecision.MS:
timestamp = '{int(p[%s].value / 1e6)}' % timestamp_index
elif precision == WritePrecision.S:
timestamp = '{int(p[%s].value / 1e9)}' % timestamp_index
f = eval(f'lambda p: f"""{{measurement_name}}{tags} {fields} {timestamp}"""', {
'measurement_name': measurement_name,
'_ESCAPE_KEY': _ESCAPE_KEY,
'_ESCAPE_STRING': _ESCAPE_STRING,
'keys': keys,
'math': math,
})
for k, v in dict(data_frame.dtypes).items():
if k in data_frame_tag_columns:
data_frame[k].replace('', np.nan, inplace=True)
self.data_frame = data_frame
self.f = f
self.field_indexes = field_indexes
self.first_field_maybe_null = null_columns.iloc[field_indexes[0] - 1]
#
# prepare chunks
#
if chunk_size is not None:
self.number_of_chunks = int(math.ceil(len(data_frame) / float(chunk_size)))
self.chunk_size = chunk_size
else:
self.number_of_chunks = None
def serialize(self, chunk_idx: int = None):
"""
Serialize chunk into LineProtocols.
:param chunk_idx: The index of chunk to serialize. If `None` then serialize whole dataframe.
"""
if chunk_idx is None:
chunk = self.data_frame
else:
logger.debug("Serialize chunk %s/%s ...", chunk_idx + 1, self.number_of_chunks)
chunk = self.data_frame[chunk_idx * self.chunk_size:(chunk_idx + 1) * self.chunk_size]
if self.first_field_maybe_null:
# When the first field is null (None/NaN), we'll have
# a spurious leading comma which needs to be removed.
lp = (re.sub('^(( |[^ ])* ),([a-zA-Z0-9])(.*)', '\\1\\3\\4', self.f(p))
for p in filter(lambda x: _any_not_nan(x, self.field_indexes), _itertuples(chunk)))
return list(lp)
else:
return list(map(self.f, _itertuples(chunk)))
def number_of_chunks(self):
"""
Return the number of chunks.
:return: number of chunks or None if chunk_size is not specified.
"""
return self.number_of_chunks
def data_frame_to_list_of_points(data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, **kwargs):
"""
Serialize DataFrame into LineProtocols.
:param data_frame: Pandas DataFrame to serialize
:param point_settings: Default Tags
:param precision: The precision for the unix timestamps within the body line-protocol.
:key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
:key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
:key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
:key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
""" # noqa: E501
return DataframeSerializer(data_frame, point_settings, precision, **kwargs).serialize()
|