1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
import time
import unittest
from datetime import timedelta
from io import StringIO
from influxdb_client import InfluxDBClient, WriteOptions, WriteApi, WritePrecision
from influxdb_client.client.write.dataframe_serializer import data_frame_to_list_of_points, DataframeSerializer
from influxdb_client.client.write.point import DEFAULT_WRITE_PRECISION
from influxdb_client.client.write_api import SYNCHRONOUS, PointSettings
from tests.base_test import BaseTest
class DataFrameWriteTest(BaseTest):
def setUp(self) -> None:
super().setUp()
self.influxDb_client = InfluxDBClient(url="http://localhost:8086", token="my-token", debug=False)
self.write_options = WriteOptions(batch_size=10_000, flush_interval=5_000, retry_interval=3_000)
self._write_client = WriteApi(influxdb_client=self.influxDb_client, write_options=self.write_options)
def tearDown(self) -> None:
super().tearDown()
self._write_client.close()
def test_write_num_py(self):
from influxdb_client.extras import pd, np
bucket = self.create_test_bucket()
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["coyote_creek", np.int64(100.5)], ["coyote_creek", np.int64(200)]],
index=[now + timedelta(hours=1), now + timedelta(hours=2)],
columns=["location", "water_level"])
write_api = self.client.write_api(write_options=SYNCHRONOUS)
write_api.write(bucket.name, record=data_frame, data_frame_measurement_name='h2o_feet',
data_frame_tag_columns=['location'])
write_api.close()
result = self.query_api.query(
"from(bucket:\"" + bucket.name + "\") |> range(start: 1970-01-01T00:00:00.000000001Z)",
self.my_organization.id)
self.assertEqual(1, len(result))
self.assertEqual(2, len(result[0].records))
self.assertEqual(result[0].records[0].get_value(), 100.0)
self.assertEqual(result[0].records[1].get_value(), 200.0)
pass
class DataSerializerTest(unittest.TestCase):
@unittest.skip('Test big data')
def test_convert_data_frame(self):
from influxdb_client.extras import pd, np
num_rows = 1500000
col_data = {
'time': np.arange(0, num_rows, 1, dtype=int),
'col1': np.random.choice(['test_a', 'test_b', 'test_c'], size=(num_rows,)),
}
for n in range(2, 9):
col_data[f'col{n}'] = np.random.rand(num_rows)
data_frame = pd.DataFrame(data=col_data)
print(data_frame)
start = time.time()
data_frame_to_list_of_points(data_frame, PointSettings(),
data_frame_measurement_name='h2o_feet',
data_frame_tag_columns=['location'])
print("Time elapsed: ", (time.time() - start))
def test_write_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
[3.1955, np.nan, 20.514305, np.nan],
[5.7310, np.nan, 23.328710, np.nan],
[np.nan, 3.138664, np.nan, 20.755026],
[5.7310, 5.139563, 23.328710, 19.791240],
[np.nan, np.nan, np.nan, np.nan],
],
index=[now, now + timedelta(minutes=30), now + timedelta(minutes=60),
now + timedelta(minutes=90), now + timedelta(minutes=120)],
columns=["actual_kw_price", "forecast_kw_price", "actual_general_use",
"forecast_general_use"])
points = data_frame_to_list_of_points(data_frame=data_frame, point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(4, len(points))
self.assertEqual("measurement actual_general_use=20.514305,actual_kw_price=3.1955 1586044800000000000",
points[0])
self.assertEqual("measurement actual_general_use=23.32871,actual_kw_price=5.731 1586046600000000000",
points[1])
self.assertEqual("measurement forecast_general_use=20.755026,forecast_kw_price=3.138664 1586048400000000000",
points[2])
self.assertEqual("measurement actual_general_use=23.32871,actual_kw_price=5.731,forecast_general_use=19.79124"
",forecast_kw_price=5.139563 1586050200000000000",
points[3])
def test_write_tag_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["", 3.1955, 20.514305],
['', 5.7310, 23.328710],
[np.nan, 5.7310, 23.328710],
["tag", 3.138664, 20.755026],
],
index=[now, now + timedelta(minutes=30),
now + timedelta(minutes=60), now + timedelta(minutes=90)],
columns=["tag", "actual_kw_price", "forecast_kw_price"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement',
data_frame_tag_columns={"tag"})
self.assertEqual(4, len(points))
self.assertEqual("measurement actual_kw_price=3.1955,forecast_kw_price=20.514305 1586044800000000000",
points[0])
self.assertEqual("measurement actual_kw_price=5.731,forecast_kw_price=23.32871 1586046600000000000",
points[1])
self.assertEqual("measurement actual_kw_price=5.731,forecast_kw_price=23.32871 1586048400000000000",
points[2])
self.assertEqual("measurement,tag=tag actual_kw_price=3.138664,forecast_kw_price=20.755026 1586050200000000000",
points[3])
def test_write_object_field_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["foo", 1],
[np.nan, 2],
],
index=[now, now + timedelta(minutes=30)],
columns=["obj", "val"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(2, len(points))
self.assertEqual("measurement obj=\"foo\",val=1i 1586044800000000000",
points[0])
self.assertEqual("measurement val=2i 1586046600000000000",
points[1])
def test_write_field_bool(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
[True],
[False],
],
index=[now, now + timedelta(minutes=30)],
columns=["status"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(2, len(points))
self.assertEqual("measurement status=True 1586044800000000000",
points[0])
self.assertEqual("measurement status=False 1586046600000000000",
points[1])
def test_escaping_measurement(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["coyote_creek", np.int64(100.5)],
["coyote_creek", np.int64(200)],
],
index=[now + timedelta(hours=1), now + timedelta(hours=2)],
columns=["location", "water_level"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measu rement',
data_frame_tag_columns={"tag"})
self.assertEqual(2, len(points))
self.assertEqual("measu\\ rement location=\"coyote_creek\",water_level=100i 1586048400000000000",
points[0])
self.assertEqual("measu\\ rement location=\"coyote_creek\",water_level=200i 1586052000000000000",
points[1])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measu\nrement2',
data_frame_tag_columns={"tag"})
self.assertEqual(2, len(points))
self.assertEqual("measu\\nrement2 location=\"coyote_creek\",water_level=100i 1586048400000000000",
points[0])
self.assertEqual("measu\\nrement2 location=\"coyote_creek\",water_level=200i 1586052000000000000",
points[1])
def test_tag_escaping_key_and_value(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["carriage\nreturn", "new\nline", "t\tab", np.int64(2)], ],
index=[now + timedelta(hours=1), ],
columns=["carriage\rreturn", "new\nline", "t\tab", "l\ne\rv\tel"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h\n2\ro\t_data',
data_frame_tag_columns={"new\nline", "carriage\rreturn", "t\tab"})
self.assertEqual(1, len(points))
self.assertEqual(
"h\\n2\\ro\\t_data,carriage\\rreturn=carriage\\nreturn,new\\nline=new\\nline,t\\tab=t\\tab l\\ne\\rv\\tel=2i 1586048400000000000",
points[0])
def test_tags_order(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["c", "a", "b", np.int64(2)], ],
index=[now + timedelta(hours=1), ],
columns=["c", "a", "b", "level"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"c", "a", "b"})
self.assertEqual(1, len(points))
self.assertEqual("h2o,a=a,b=b,c=c level=2i 1586048400000000000", points[0])
def test_escape_text_value(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
an_hour_ago = now - timedelta(hours=1)
test = [{'a': an_hour_ago, 'b': 'hello world', 'c': 1, 'd': 'foo bar'},
{'a': now, 'b': 'goodbye cruel world', 'c': 2, 'd': 'bar foo'}]
data_frame = pd.DataFrame(test)
data_frame = data_frame.set_index('a')
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='test',
data_frame_tag_columns=['d'])
self.assertEqual(2, len(points))
self.assertEqual("test,d=foo\\ bar b=\"hello world\",c=1i 1586041200000000000", points[0])
self.assertEqual("test,d=bar\\ foo b=\"goodbye cruel world\",c=2i 1586044800000000000", points[1])
def test_with_default_tags(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data={
'value': [1, 2],
't1': ['a1', 'a2'],
't3': ['c1', 'c2'],
},
index=[now + timedelta(hours=1), now + timedelta(hours=2)])
original_data = data_frame.copy()
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(t2='every'),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"t1", "t3"})
self.assertEqual(2, len(points))
self.assertEqual("h2o,t1=a1,t2=every,t3=c1 value=1i 1586048400000000000", points[0])
self.assertEqual("h2o,t1=a2,t2=every,t3=c2 value=2i 1586052000000000000", points[1])
# Check that the data frame hasn't been changed (an earlier version did change it)
self.assertEqual(True, (data_frame == original_data).all(axis=None), f'data changed; old:\n{original_data}\nnew:\n{data_frame}')
# Check that the default tags won't override actual column data.
# This is arguably incorrect behavior, but it's how it works currently.
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(t1='every'),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"t1", "t3"})
self.assertEqual(2, len(points))
self.assertEqual("h2o,t1=a1,t3=c1 value=1i 1586048400000000000", points[0])
self.assertEqual("h2o,t1=a2,t3=c2 value=2i 1586052000000000000", points[1])
self.assertEqual(True, (data_frame == original_data).all(axis=None), f'data changed; old:\n{original_data}\nnew:\n{data_frame}')
def test_with_period_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value': [1, 2],
},
index=pd.period_range(start='2020-04-05 01:00', freq='H', periods=2))
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h2o')
self.assertEqual(2, len(points))
self.assertEqual("h2o value=1i 1586048400000000000", points[0])
self.assertEqual("h2o value=2i 1586052000000000000", points[1])
def test_write_num_py_floats(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
float_types = [np.float16, np.float32, np.float64]
if hasattr(np, 'float128'):
float_types.append(np.float128)
for np_float_type in float_types:
data_frame = pd.DataFrame([15.5], index=[now], columns=['level']).astype(np_float_type)
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings())
self.assertEqual(1, len(points))
self.assertEqual("h2o level=15.5 1586044800000000000", points[0], msg=f'Current type: {np_float_type}')
def test_write_precision(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
precisions = [
(WritePrecision.NS, 1586044800000000000),
(WritePrecision.US, 1586044800000000),
(WritePrecision.MS, 1586044800000),
(WritePrecision.S, 1586044800),
(None, 1586044800000000000)
]
for precision in precisions:
data_frame = pd.DataFrame([15], index=[now], columns=['level'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings(),
precision=precision[0])
self.assertEqual(1, len(points))
self.assertEqual(f"h2o level=15i {precision[1]}", points[0])
def test_index_not_periodIndex_respect_write_precision(self):
from influxdb_client.extras import pd
precisions = [
(WritePrecision.NS, 1586044800000000000),
(WritePrecision.US, 1586044800000000),
(WritePrecision.MS, 1586044800000),
(WritePrecision.S, 1586044800),
(None, 1586044800000000000)
]
for precision in precisions:
data_frame = pd.DataFrame([15], index=[precision[1]], columns=['level'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings(),
precision=precision[0])
self.assertEqual(1, len(points))
self.assertEqual(f"h2o level=15i {precision[1]}", points[0])
def test_serialize_strings_with_commas(self):
from influxdb_client.extras import pd
csv = StringIO("""sep=;
Date;Entry Type;Value;Currencs;Category;Person;Account;Counter Account;Group;Note;Recurring;
"01.10.2018";"Expense";"-1,00";"EUR";"Testcategory";"";"Testaccount";"";"";"This, works";"no";
"02.10.2018";"Expense";"-1,00";"EUR";"Testcategory";"";"Testaccount";"";"";"This , works not";"no";
""")
data_frame = pd.read_csv(csv, sep=";", skiprows=1, decimal=",", encoding="utf-8")
data_frame['Date'] = pd.to_datetime(data_frame['Date'], format="%d.%m.%Y")
data_frame.set_index('Date', inplace=True)
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="bookings",
data_frame_tag_columns=['Entry Type', 'Category', 'Person', 'Account'],
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual("bookings,Account=Testaccount,Category=Testcategory,Entry\\ Type=Expense Currencs=\"EUR\",Note=\"This, works\",Recurring=\"no\",Value=-1.0 1538352000000000000", points[0])
self.assertEqual("bookings,Account=Testaccount,Category=Testcategory,Entry\\ Type=Expense Currencs=\"EUR\",Note=\"This , works not\",Recurring=\"no\",Value=-1.0 1538438400000000000", points[1])
def test_without_tags_and_fields_with_nan(self):
from influxdb_client.extras import pd, np
df = pd.DataFrame({
'a': np.arange(0., 3.),
'b': [0., np.nan, 1.],
}).set_index(pd.to_datetime(['2021-01-01 0:00', '2021-01-01 0:01', '2021-01-01 0:02']))
points = data_frame_to_list_of_points(data_frame=df,
data_frame_measurement_name="test",
point_settings=PointSettings())
self.assertEqual(3, len(points))
self.assertEqual("test a=0.0,b=0.0 1609459200000000000", points[0])
self.assertEqual("test a=1.0 1609459260000000000", points[1])
self.assertEqual("test a=2.0,b=1.0 1609459320000000000", points[2])
def test_use_timestamp_from_specified_column(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'column_time': ['2020-04-05', '2020-05-05'],
'value1': [10, 20],
'value2': [30, 40],
}, index=['A', 'B'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1586044800000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1588636800000000000', points[1])
def test_str_format_for_timestamp(self):
from influxdb_client.extras import pd
time_formats = [
('2018-10-26', 'test value1=10i,value2=20i 1540512000000000000'),
('2018-10-26 10:00', 'test value1=10i,value2=20i 1540548000000000000'),
('2018-10-26 10:00:00-05:00', 'test value1=10i,value2=20i 1540566000000000000'),
('2018-10-26T11:00:00+00:00', 'test value1=10i,value2=20i 1540551600000000000'),
('2018-10-26 12:00:00+00:00', 'test value1=10i,value2=20i 1540555200000000000'),
('2018-10-26T16:00:00-01:00', 'test value1=10i,value2=20i 1540573200000000000'),
]
for time_format in time_formats:
data_frame = pd.DataFrame(data={
'column_time': [time_format[0]],
'value1': [10],
'value2': [20],
}, index=['A'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
point_settings=PointSettings())
self.assertEqual(1, len(points))
self.assertEqual(time_format[1], points[0])
def test_specify_timezone(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'column_time': ['2020-05-24 10:00', '2020-05-24 01:00'],
'value1': [10, 20],
'value2': [30, 40],
}, index=['A', 'B'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590274800000000000', points[1])
def test_specify_timezone_date_time_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value1': [10, 20],
'value2': [30, 40],
}, index=[pd.Timestamp('2020-05-24 10:00'), pd.Timestamp('2020-05-24 01:00')])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590274800000000000', points[1])
def test_specify_timezone_period_time_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value1': [10, 20],
'value2': [30, 40],
}, index=pd.period_range(start='2020-05-24 10:00', freq='H', periods=2))
print(data_frame.to_string())
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590310800000000000', points[1])
def test_serialization_for_nan_in_columns_starting_with_digits(self):
from influxdb_client.extras import pd
from influxdb_client.extras import np
data_frame = pd.DataFrame(data={
'1value': [np.nan, 30.0, np.nan, 30.0, np.nan],
'2value': [30.0, np.nan, np.nan, np.nan, np.nan],
'3value': [30.0, 30.0, 30.0, np.nan, np.nan],
'avalue': [30.0, 30.0, 30.0, 30.0, 30.0]
}, index=pd.period_range('2020-05-24 10:00', freq='H', periods=5))
points = data_frame_to_list_of_points(data_frame,
PointSettings(),
data_frame_measurement_name='test')
self.assertEqual(5, len(points))
self.assertEqual('test 2value=30.0,3value=30.0,avalue=30.0 1590314400000000000', points[0])
self.assertEqual('test 1value=30.0,3value=30.0,avalue=30.0 1590318000000000000', points[1])
self.assertEqual('test 3value=30.0,avalue=30.0 1590321600000000000', points[2])
self.assertEqual('test 1value=30.0,avalue=30.0 1590325200000000000', points[3])
self.assertEqual('test avalue=30.0 1590328800000000000', points[4])
data_frame = pd.DataFrame(data={
'1value': [np.nan],
'avalue': [30.0],
'bvalue': [30.0]
}, index=pd.period_range('2020-05-24 10:00', freq='H', periods=1))
points = data_frame_to_list_of_points(data_frame,
PointSettings(),
data_frame_measurement_name='test')
self.assertEqual(1, len(points))
self.assertEqual('test avalue=30.0,bvalue=30.0 1590314400000000000', points[0])
class DataSerializerChunksTest(unittest.TestCase):
def test_chunks(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(
data=[
["a", 1, 2],
["b", 3, 4],
["c", 5, 6],
["d", 7, 8],
],
index=[1, 2, 3, 4],
columns=["tag", "field1", "field2"])
#
# Batch size = 2
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 2,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(2, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2'], serializer.serialize(chunk_idx=0))
self.assertEqual(['m,tag=c field1=5i,field2=6i 3',
'm,tag=d field1=7i,field2=8i 4'], serializer.serialize(chunk_idx=1))
#
# Batch size = 10
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 10,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(1, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2',
'm,tag=c field1=5i,field2=6i 3',
'm,tag=d field1=7i,field2=8i 4'
], serializer.serialize(chunk_idx=0))
#
# Batch size = 3
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 3,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(2, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2',
'm,tag=c field1=5i,field2=6i 3'
], serializer.serialize(chunk_idx=0))
self.assertEqual(['m,tag=d field1=7i,field2=8i 4'], serializer.serialize(chunk_idx=1))
|