File: eq_snapshot.md

package info (click to toggle)
python-inline-snapshot 0.23.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,116 kB
  • sloc: python: 6,888; makefile: 34; sh: 28
file content (447 lines) | stat: -rw-r--r-- 12,227 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
## General

A snapshot can be compared with any value using `==`.
The value can be recorded with `--inline-snapshot=create` if the snapshot is empty.
The value can later be changed with `--inline-snapshot=fix` if the value the snapshot is compared with has changed.

Example:

=== "original code"
    <!-- inline-snapshot: first_block outcome-passed=1 outcome-errors=1 -->
    ``` python
    from inline_snapshot import snapshot


    def test_something():
        assert 2 + 4 == snapshot()
    ```

=== "--inline-snapshot=create"
    <!-- inline-snapshot: create outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="5"
    from inline_snapshot import snapshot


    def test_something():
        assert 2 + 4 == snapshot(6)
    ```

=== "value changed"
    <!-- inline-snapshot: outcome-failed=1 outcome-errors=1 -->
    ``` python hl_lines="5"
    from inline_snapshot import snapshot


    def test_something():
        assert 2 + 40 == snapshot(4)
    ```

=== "--inline-snapshot=fix"
    <!-- inline-snapshot: fix outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="5"
    from inline_snapshot import snapshot


    def test_something():
        assert 2 + 40 == snapshot(42)
    ```
## unmanaged snapshot values

inline-snapshots manages everything inside `snapshot(...)`, which means that the developer should not change these parts, but there are cases where it is useful to give the developer the control over the snapshot content back.

Therefor some types will be ignored by inline-snapshot and will **not be updated or fixed**, even if they cause tests to fail.

These types are:

* [dirty-equals](#dirty-equals) expressions,
* [dynamic code](#is) inside `Is(...)`,
* [snapshots](#inner-snapshots) inside snapshots and
* [f-strings](#f-strings).

inline-snapshot is able to handle these types within the following containers:

* list
* tuple
* dict
* [namedtuple](https://docs.python.org/3/library/collections.html#collections.namedtuple)
* [dataclass](https://docs.python.org/3/library/dataclasses.html)
* [attrs](https://www.attrs.org/en/stable/index.html)
<!--
* pydantic models
* attrs
-->

Other types are converted with a [customizable](customize_repr.md) `repr()` into code. It is not possible to use unmanaged snapshot values within these objects.

### dirty-equals

!!! note
    Use the optional *dirty-equals* dependency to install the version that works best in combination with inline-snapshot.
    ``` sh
    pip install inline-snapshot[dirty-equals]
    ```

It might be, that larger snapshots with many lists and dictionaries contain some values which change frequently and are not relevant for the test.
They might be part of larger data structures and be difficult to normalize.

Example:

=== "original code"
    <!-- inline-snapshot: first_block outcome-passed=1 outcome-errors=1 -->
    ``` python
    from inline_snapshot import snapshot
    import datetime


    def get_data():
        return {
            "date": datetime.datetime.utcnow(),
            "payload": "some data",
        }


    def test_function():
        assert get_data() == snapshot()
    ```

=== "--inline-snapshot=create"
    <!-- inline-snapshot: create outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="13 14 15"
    from inline_snapshot import snapshot
    import datetime


    def get_data():
        return {
            "date": datetime.datetime.utcnow(),
            "payload": "some data",
        }


    def test_function():
        assert get_data() == snapshot(
            {"date": datetime.datetime(2024, 3, 14, 0, 0), "payload": "some data"}
        )
    ```

The date can be replaced with the [dirty-equals](https://dirty-equals.helpmanual.io/latest/) expression `IsDatetime()`.


Example:

=== "using IsDatetime()"
    <!-- inline-snapshot: first_block outcome-passed=1 -->
    ``` python
    from inline_snapshot import snapshot
    from dirty_equals import IsDatetime
    import datetime


    def get_data():
        return {
            "date": datetime.datetime.utcnow(),
            "payload": "some data",
        }


    def test_function():
        assert get_data() == snapshot(
            {
                "date": IsDatetime(),
                "payload": "some data",
            }
        )
    ```

=== "changed payload"
    <!-- inline-snapshot: outcome-failed=1 outcome-errors=1 -->
    ``` python hl_lines="9"
    from inline_snapshot import snapshot
    from dirty_equals import IsDatetime
    import datetime


    def get_data():
        return {
            "date": datetime.datetime.utcnow(),
            "payload": "data changed for some good reason",
        }


    def test_function():
        assert get_data() == snapshot(
            {
                "date": IsDatetime(),
                "payload": "some data",
            }
        )
    ```


=== "--inline-snapshot=fix"
    <!-- inline-snapshot: fix outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="17"
    from inline_snapshot import snapshot
    from dirty_equals import IsDatetime
    import datetime


    def get_data():
        return {
            "date": datetime.datetime.utcnow(),
            "payload": "data changed for some good reason",
        }


    def test_function():
        assert get_data() == snapshot(
            {
                "date": IsDatetime(),
                "payload": "data changed for some good reason",
            }
        )
    ```

`snapshot()` can also be used inside dirty-equals expressions.
One useful example is `IsJson()`:


=== "using IsJson()"
    <!-- inline-snapshot: first_block outcome-passed=1 outcome-errors=1 -->
    ``` python
    from dirty_equals import IsJson
    from inline_snapshot import snapshot


    def test_foo():
        assert {"json_data": '{"value": 1}'} == snapshot(
            {"json_data": IsJson(snapshot())}
        )
    ```


=== "--inline-snapshot=create"
    <!-- inline-snapshot: create outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="7"
    from dirty_equals import IsJson
    from inline_snapshot import snapshot


    def test_foo():
        assert {"json_data": '{"value": 1}'} == snapshot(
            {"json_data": IsJson(snapshot({"value": 1}))}
        )
    ```

The general rule is that functions to which you pass a *snapshot* as an argument can only use `==` (or other snapshot operations) on this argument.

!!! important
    You cannot use a *snapshot* for every dirty equals argument, but only for those that also support dirty equals expressions.


### Is(...)

`Is()` can be used to put runtime values inside snapshots.
It tells inline-snapshot that the developer wants control over some part of the snapshot.

<!-- inline-snapshot: create fix first_block outcome-passed=1 -->
``` python
from inline_snapshot import snapshot, Is

current_version = "1.5"


def request():
    return {"data": "page data", "version": current_version}


def test_function():
    assert request() == snapshot(
        {"data": "page data", "version": Is(current_version)}
    )
```

The snapshot does not need to be fixed when `current_version` changes in the future, but `"page data"` will still be fixed if it changes.

`Is()` can also be used when the snapshot is evaluated multiple times, which is useful in loops or parametrized tests.

=== "original code"
    <!-- inline-snapshot: first_block outcome-failed=1 outcome-errors=1 -->
    ``` python
    from inline_snapshot import snapshot, Is


    def test_function():
        for c in "abc":
            assert [c, "correct"] == snapshot([Is(c), "wrong"])
    ```

=== "--inline-snapshot=fix"
    <!-- inline-snapshot: fix outcome-passed=1 outcome-errors=1 -->
    ``` python hl_lines="6"
    from inline_snapshot import snapshot, Is


    def test_function():
        for c in "abc":
            assert [c, "correct"] == snapshot([Is(c), "correct"])
    ```

### inner snapshots

Snapshots can be used inside other snapshots in different use cases.

#### conditional snapshots
It is also possible to use snapshots inside snapshots.

This is useful to describe version specific parts of snapshots by replacing the specific part with `#!python snapshot() if some_condition else snapshot()`.
The test has to be executed in each specific condition to fill the snapshots.

The following example shows how this can be used to run a tests with two different library versions:

=== "my_lib.py v1"

    <!-- inline-snapshot-lib: my_lib.py -->
    ``` python
    version = 1


    def get_schema():
        return [{"name": "var_1", "type": "int"}]
    ```

=== "my_lib.py v2"

    <!-- inline-snapshot-lib: my_lib.py -->
    ``` python
    version = 2


    def get_schema():
        return [{"name": "var_1", "type": "string"}]
    ```


<!-- inline-snapshot: create fix first_block outcome-passed=1 -->
``` python
from inline_snapshot import snapshot
from my_lib import version, get_schema


def test_function():
    assert get_schema() == snapshot(
        [
            {
                "name": "var_1",
                "type": snapshot("int") if version < 2 else snapshot("string"),
            }
        ]
    )
```

The advantage of this approach is that the test uses always the correct values for each library version.

You can also extract the version logic into its own function.
<!-- inline-snapshot: create fix first_block outcome-passed=1 -->
``` python
from inline_snapshot import snapshot, Snapshot
from my_lib import version, get_schema


def version_snapshot(v1: Snapshot, v2: Snapshot):
    return v1 if version < 2 else v2


def test_function():
    assert get_schema() == snapshot(
        [
            {
                "name": "var_1",
                "type": version_snapshot(
                    v1=snapshot("int"), v2=snapshot("string")
                ),
            }
        ]
    )
```

#### common snapshot parts

Another use case is the extraction of common snapshot parts into an extra snapshot:

<!-- inline-snapshot: create fix first_block outcome-passed=1 -->
``` python
from inline_snapshot import snapshot


def some_data(name):
    return {"header": "really long header\n" * 5, "your name": name}


def test_function():

    header = snapshot(
        """\
really long header
really long header
really long header
really long header
really long header
"""
    )

    assert some_data("Tom") == snapshot(
        {
            "header": header,
            "your name": "Tom",
        }
    )

    assert some_data("Bob") == snapshot(
        {
            "header": header,
            "your name": "Bob",
        }
    )
```

This simplifies test data and allows inline-snapshot to update your values if required.
It makes also sure that the header is the same in both cases.


### f-strings

*f-strings* are not generated by inline-snapshot, but they can be used in snapshots if you want to replace some dynamic part of a string value.

<!-- inline-snapshot: create fix first_block outcome-passed=1 -->
``` python
from inline_snapshot import snapshot


def get_error():
    # example code which generates an error message
    return __file__ + ": error at line 5"


def test_get_error():
    assert get_error() == snapshot(f"{__file__}: error at line 5")
```

It is not required to wrap the changed value in `Is(f"...")`, because inline-snapshot knows that *f-strings* are only generated by the developer.

!!! Warning "Limitation"
    inline-snapshot is currently not able to fix the string constants within *f-strings*.

    `#!python f"...{var}..."` works **currently** like `#!python Is(f"...{var}...")` and issues a warning if the value changes, giving you the opportunity to fix your f-string.

    `#!python f"...{var}..."` will in the **future** work like `#!python f"...{Is(var)}"`. inline-snapshot will then be able to *fix* the string parts within the f-string.


## pytest options

It interacts with the following `--inline-snapshot` flags:

- `create` create a new value if the snapshot value is undefined.
- `fix` record the value parts and store them in the source code if it is different from the current one.
- `update` update parts of the value if their representation has changed.
  Parts which are replaced with dirty-equals expressions are not updated.