1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#########
intbitset
#########
*****
About
*****
Provides an ``intbitset`` data object holding unordered sets of unsigned
integers with ultra fast set operations, implemented via bit vectors
and *Python C extension* to optimize speed and memory usage.
Emulates the Python built-in set class interface with some additional
specific methods such as its own fast dump and load marshalling
functions.
``intbitset`` additionally support the `pickle protocol
<https://docs.python.org/3/library/pickle.html>`_,
the `iterator protocol <https://docs.python.org/3/library/stdtypes.html#iterator-types>`_
and can behave like a ``sequence`` type.
Usage
=====
Example: ::
>>> from intbitset import intbitset
>>> x = intbitset([1,2,3])
>>> y = intbitset([3,4,5])
>>> x & y
intbitset([3])
>>> x | y
intbitset([1, 2, 3, 4, 5])
Notes
=====
- Uses real bits to optimize memory usage, so may have issues with *endianness*
if you transport serialized bitsets between various machine architectures.
- Please note that no bigger than ``__maxelem__`` elements can be added to an ``intbitset``.
- On modern CPUs, *vectorial instruction sets* (such as MMX/SSE) are exploited
to further optimize speed.
***********
Performance
***********
Here is an example of performance gain with respect to traditional ``set`` of
positive integers (example of *ipython* session): ::
>>> ## preparation
>>> from intbitset import intbitset
>>> from random import sample
>>> sparse_population1 = sample(range(1000000), 10000)
>>> sparse_population2 = sample(range(1000000), 10000)
>>> dense_population1 = sample(range(1000000), 900000)
>>> dense_population2 = sample(range(1000000), 900000)
>>> sparse_set1 = set(sparse_population1)
>>> sparse_set2 = set(sparse_population2)
>>> sparse_intbitset1 = intbitset(sparse_population1)
>>> sparse_intbitset2 = intbitset(sparse_population2)
>>> dense_set1 = set(dense_population1)
>>> dense_set2 = set(dense_population2)
>>> dense_intbitset1 = intbitset(dense_population1)
>>> dense_intbitset2 = intbitset(dense_population2)
>>> sorted(sparse_population1)[5000:5002]
[500095, 500124]
>>> in_sparse = 500095
>>> not_in_sparse = 500096
>>> sorted(dense_population1)[500000:500002]
[555705, 555707]
>>> in_dense = 555705
>>> not_in_dense = 555706
For sparse sets, ``intbitset`` operations are typically **50 times faster** than
set operations.
>>> ## Sparse sets operations
>>> %timeit sparse_set1 & sparse_set2
1000 loops, best of 3: 263 µs per loop
>>> %timeit sparse_intbitset1 & sparse_intbitset2 ## more than 20 times faster
100000 loops, best of 3: 11.6 µs per loop
>>> %timeit sparse_set1 | sparse_set2
1000 loops, best of 3: 891 µs per loop
>>> %timeit sparse_intbitset1 | sparse_intbitset2 ## almost 70 times faster
100000 loops, best of 3: 12.8 µs per loop
>>> %timeit sparse_set1 ^ sparse_set2
1000 loops, best of 3: 1.09 ms per loop
>>> %timeit sparse_intbitset1 ^ sparse_intbitset2 ## more than 80 times faster
100000 loops, best of 3: 12.9 µs per loop
>>> %timeit sparse_set1 - sparse_set2
1000 loops, best of 3: 739 µs per loop
>>> %timeit sparse_intbitset1 - sparse_intbitset2 ## almost 60 times faster
100000 loops, best of 3: 12.5 µs per loop
For dense sets, ``intbitset`` operations are typically **5000 times faster**
than set operations: ::
>>> ## Dense sets operations
>>> %timeit dense_set1 & dense_set2
10 loops, best of 3: 62.1 ms per loop
>>> %timeit dense_intbitset1 & dense_intbitset2 ## more than 5000 times faster
100000 loops, best of 3: 12.3 µs per loop
>>> %timeit dense_set1 | dense_set2
10 loops, best of 3: 84.1 ms per loop
>>> %timeit dense_intbitset1 | dense_intbitset2 ## more than 6000 times faster
100000 loops, best of 3: 12.5 µs per loop
>>> %timeit dense_set1 ^ dense_set2
10 loops, best of 3: 64.2 ms per loop
>>> %timeit dense_intbitset1 ^ dense_intbitset2 ## more than 5000 times faster
100000 loops, best of 3: 12.6 µs per loop
>>> %timeit dense_set1 - dense_set2
10 loops, best of 3: 38.6 ms per loop
>>> timeit dense_intbitset1 - dense_intbitset2 ## more than 3000 times faster
100000 loops, best of 3: 12.8 µs per loop
Membership operations in ``intbitset`` behave in a comparable way than ``set`` objects, albeit with slightly better performance: ::
>>> ## Membership tests
>>> %timeit in_sparse in sparse_set1
10000000 loops, best of 3: 66.8 ns per loop
>>> %timeit in_sparse in sparse_intbitset1 ## 1.5 times faster
10000000 loops, best of 3: 42.8 ns per loop
>>> %timeit not_in_sparse in sparse_set1
10000000 loops, best of 3: 71.3 ns per loop
>>> %timeit not_in_sparse in sparse_intbitset1 ## 1.6 times faster
10000000 loops, best of 3: 44.7 ns per loop
>>> %timeit in_dense in dense_set1
10000000 loops, best of 3: 61.8 ns per loop
>>> %timeit in_dense in dense_intbitset1 ## 1.3 times faster
10000000 loops, best of 3: 45.3 ns per loop
>>> %timeit not_in_dense in dense_set1
10000000 loops, best of 3: 45.5 ns per loop
>>> %timeit not_in_dense in dense_intbitset1 ## similar speed
10000000 loops, best of 3: 41.4 ns per loop
Serialising can be up to **30 times faster**: ::
>>> ## serialization speed
>>> ## note: internally intbitset compress using zlib so we are
>>> ## going to also compress the equivalent set
>>> from zlib import compress, decompress
>>> from marshal import dumps, loads
>>> %timeit loads(decompress(compress(dumps(sparse_set1))))
100 loops, best of 3: 6.55 ms per loop
>>> %timeit intbitset(sparse_intbitset1.fastdump()) ## 15% faster
100 loops, best of 3: 5.63 ms per loop
>>> %timeit loads(decompress(compress(dumps(dense_set1))))
1 loops, best of 3: 565 ms per loop
>>> %timeit intbitset(dense_intbitset1.fastdump()) ## almost 30 times faster for dense sets
10 loops, best of 3: 20.9 ms per loop
Serialising can lead to **20 times smaller footprint**: ::
>>> len(compress(dumps(sparse_set1)))
29349
>>> len(sparse_intbitset1.fastdump()) ## almost half the space
16166
>>> len(compress(dumps(dense_set1)))
1363026
>>> len(dense_intbitset1.fastdump()) ## 5% of the space for dense set
70332
*********
Reference
*********
.. automodule:: intbitset
:members:
:undoc-members:
:special-members:
******************
Indices and tables
******************
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
****************
Additional Notes
****************
Notes on how to contribute, legal information and changelog are here for the
interested.
.. toctree::
:maxdepth: 2
contributing
changelog
license
|