File: intervaltree.py

package info (click to toggle)
python-intervaltree 2.1.0-2~bpo8+1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 276 kB
  • sloc: python: 1,023; makefile: 3
file content (1094 lines) | stat: -rw-r--r-- 37,105 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
"""
intervaltree: A mutable, self-balancing interval tree for Python 2 and 3.
Queries may be by point, by range overlap, or by range envelopment.

Core logic.

Copyright 2013-2015 Chaim-Leib Halbert
Modifications Copyright 2014 Konstantin Tretyakov

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from .interval import Interval
from .node import Node
from numbers import Number
import collections
from sortedcontainers import SortedDict
from copy import copy
from warnings import warn

try:
    xrange  # Python 2?
except NameError:  # pragma: no cover
    xrange = range


# noinspection PyBroadException
class IntervalTree(collections.MutableSet):
    """
    A binary lookup tree of intervals.
    The intervals contained in the tree are represented using ``Interval(a, b, data)`` objects.
    Each such object represents a half-open interval ``[a, b)`` with optional data.
    
    Examples:
    ---------
    
    Initialize a blank tree::
    
        >>> tree = IntervalTree()
        >>> tree
        IntervalTree()
    
    Initialize a tree from an iterable set of Intervals in O(n * log n)::
    
        >>> tree = IntervalTree([Interval(-10, 10), Interval(-20.0, -10.0)])
        >>> tree
        IntervalTree([Interval(-20.0, -10.0), Interval(-10, 10)])
        >>> len(tree)
        2
    
    Note that this is a set, i.e. repeated intervals are ignored. However,
    Intervals with different data fields are regarded as different::
    
        >>> tree = IntervalTree([Interval(-10, 10), Interval(-10, 10), Interval(-10, 10, "x")])
        >>> tree
        IntervalTree([Interval(-10, 10), Interval(-10, 10, 'x')])
        >>> len(tree)
        2
    
    Insertions::
        >>> tree = IntervalTree()
        >>> tree[0:1] = "data"
        >>> tree.add(Interval(10, 20))
        >>> tree.addi(19.9, 20)
        >>> tree
        IntervalTree([Interval(0, 1, 'data'), Interval(10, 20), Interval(19.9, 20)])
        >>> tree.update([Interval(19.9, 20.1), Interval(20.1, 30)])
        >>> len(tree)
        5

        Inserting the same Interval twice does nothing::
            >>> tree = IntervalTree()
            >>> tree[-10:20] = "arbitrary data"
            >>> tree[-10:20] = None  # Note that this is also an insertion
            >>> tree
            IntervalTree([Interval(-10, 20), Interval(-10, 20, 'arbitrary data')])
            >>> tree[-10:20] = None  # This won't change anything
            >>> tree[-10:20] = "arbitrary data" # Neither will this
            >>> len(tree)
            2

    Deletions::
        >>> tree = IntervalTree(Interval(b, e) for b, e in [(-10, 10), (-20, -10), (10, 20)])
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(-10, 10), Interval(10, 20)])
        >>> tree.remove(Interval(-10, 10))
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(10, 20)])
        >>> tree.remove(Interval(-10, 10))
        Traceback (most recent call last):
        ...
        ValueError
        >>> tree.discard(Interval(-10, 10))  # Same as remove, but no exception on failure
        >>> tree
        IntervalTree([Interval(-20, -10), Interval(10, 20)])
        
    Delete intervals, overlapping a given point::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.1)
        >>> tree
        IntervalTree([Interval(-1.1, 1.1)])
        
    Delete intervals, overlapping an interval::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_overlap(0, 0.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.7, 1.8)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.6, 1.6)  # Null interval does nothing
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_overlap(1.6, 1.5)  # Ditto
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        
    Delete intervals, enveloped in the range::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> tree.remove_envelop(-1.0, 1.5)
        >>> tree
        IntervalTree([Interval(-1.1, 1.1), Interval(0.5, 1.7)])
        >>> tree.remove_envelop(-1.1, 1.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_envelop(0.5, 1.5)
        >>> tree
        IntervalTree([Interval(0.5, 1.7)])
        >>> tree.remove_envelop(0.5, 1.7)
        >>> tree
        IntervalTree()
        
    Point/interval overlap queries::
    
        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> assert tree[-1.1]         == set([Interval(-1.1, 1.1)])
        >>> assert tree.search(1.1)   == set([Interval(-0.5, 1.5), Interval(0.5, 1.7)])   # Same as tree[1.1]
        >>> assert tree[-0.5:0.5]     == set([Interval(-0.5, 1.5), Interval(-1.1, 1.1)])  # Interval overlap query
        >>> assert tree.search(1.5, 1.5) == set()                                         # Same as tree[1.5:1.5]
        >>> assert tree.search(1.5) == set([Interval(0.5, 1.7)])                          # Same as tree[1.5]

        >>> assert tree.search(1.7, 1.8) == set()

    Envelop queries::
    
        >>> assert tree.search(-0.5, 0.5, strict=True) == set()
        >>> assert tree.search(-0.4, 1.7, strict=True) == set([Interval(0.5, 1.7)])
        
    Membership queries::

        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> Interval(-0.5, 0.5) in tree
        False
        >>> Interval(-1.1, 1.1) in tree
        True
        >>> Interval(-1.1, 1.1, "x") in tree
        False
        >>> tree.overlaps(-1.1)
        True
        >>> tree.overlaps(1.7)
        False
        >>> tree.overlaps(1.7, 1.8)
        False
        >>> tree.overlaps(-1.2, -1.1)
        False
        >>> tree.overlaps(-1.2, -1.0)
        True
    
    Sizing::

        >>> tree = IntervalTree([Interval(-1.1, 1.1), Interval(-0.5, 1.5), Interval(0.5, 1.7)])
        >>> len(tree)
        3
        >>> tree.is_empty()
        False
        >>> IntervalTree().is_empty()
        True
        >>> not tree
        False
        >>> not IntervalTree()
        True
        >>> print(tree.begin())    # using print() because of floats in Python 2.6
        -1.1
        >>> print(tree.end())      # ditto
        1.7
        
    Iteration::

        >>> tree = IntervalTree([Interval(-11, 11), Interval(-5, 15), Interval(5, 17)])
        >>> [iv.begin for iv in sorted(tree)]
        [-11, -5, 5]
        >>> assert tree.items() == set([Interval(-5, 15), Interval(-11, 11), Interval(5, 17)])

    Copy- and typecasting, pickling::
    
        >>> tree0 = IntervalTree([Interval(0, 1, "x"), Interval(1, 2, ["x"])])
        >>> tree1 = IntervalTree(tree0)  # Shares Interval objects
        >>> tree2 = tree0.copy()         # Shallow copy (same as above, as Intervals are singletons)
        >>> import pickle
        >>> tree3 = pickle.loads(pickle.dumps(tree0))  # Deep copy
        >>> list(tree0[1])[0].data[0] = "y"  # affects shallow copies, but not deep copies
        >>> tree0
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree1
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree2
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['y'])])
        >>> tree3
        IntervalTree([Interval(0, 1, 'x'), Interval(1, 2, ['x'])])
        
    Equality testing::
    
        >>> IntervalTree([Interval(0, 1)]) == IntervalTree([Interval(0, 1)])
        True
        >>> IntervalTree([Interval(0, 1)]) == IntervalTree([Interval(0, 1, "x")])
        False
    """
    @classmethod
    def from_tuples(cls, tups):
        """
        Create a new IntervalTree from an iterable of 2- or 3-tuples,
         where the tuple lists begin, end, and optionally data.
        """
        ivs = [Interval(*t) for t in tups]
        return IntervalTree(ivs)

    def __init__(self, intervals=None):
        """
        Set up a tree. If intervals is provided, add all the intervals 
        to the tree.
        
        Completes in O(n*log n) time.
        """
        intervals = set(intervals) if intervals is not None else set()
        for iv in intervals:
            if iv.is_null():
                raise ValueError(
                    "IntervalTree: Null Interval objects not allowed in IntervalTree:"
                    " {0}".format(iv)
                )
        self.all_intervals = intervals
        self.top_node = Node.from_intervals(self.all_intervals)
        self.boundary_table = SortedDict()
        for iv in self.all_intervals:
            self._add_boundaries(iv)

    def copy(self):
        """
        Construct a new IntervalTree using shallow copies of the 
        intervals in the source tree.
        
        Completes in O(n*log n) time.
        :rtype: IntervalTree
        """
        return IntervalTree(iv.copy() for iv in self)
    
    def _add_boundaries(self, interval):
        """
        Records the boundaries of the interval in the boundary table.
        """
        begin = interval.begin
        end = interval.end
        if begin in self.boundary_table: 
            self.boundary_table[begin] += 1
        else:
            self.boundary_table[begin] = 1
        
        if end in self.boundary_table:
            self.boundary_table[end] += 1
        else:
            self.boundary_table[end] = 1
    
    def _remove_boundaries(self, interval):
        """
        Removes the boundaries of the interval from the boundary table.
        """
        begin = interval.begin
        end = interval.end
        if self.boundary_table[begin] == 1:
            del self.boundary_table[begin]
        else:
            self.boundary_table[begin] -= 1
        
        if self.boundary_table[end] == 1:
            del self.boundary_table[end]
        else:
            self.boundary_table[end] -= 1
    
    def add(self, interval):
        """
        Adds an interval to the tree, if not already present.
        
        Completes in O(log n) time.
        """
        if interval in self: 
            return

        if interval.is_null():
            raise ValueError(
                "IntervalTree: Null Interval objects not allowed in IntervalTree:"
                " {0}".format(interval)
            )

        if not self.top_node:
            self.top_node = Node.from_interval(interval)
        else:
            self.top_node = self.top_node.add(interval)
        self.all_intervals.add(interval)
        self._add_boundaries(interval)
    append = add
    
    def addi(self, begin, end, data=None):
        """
        Shortcut for add(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.add(Interval(begin, end, data))
    appendi = addi
    
    def update(self, intervals):
        """
        Given an iterable of intervals, add them to the tree.
        
        Completes in O(m*log(n+m), where m = number of intervals to 
        add.
        """
        for iv in intervals:
            self.add(iv)

    def extend(self, intervals):
        """
        Deprecated: Replaced by update().
        """
        warn("IntervalTree.extend() has been deprecated. Consider using update() instead", DeprecationWarning)
        self.update(intervals)

    def remove(self, interval):
        """
        Removes an interval from the tree, if present. If not, raises 
        ValueError.
        
        Completes in O(log n) time.
        """
        #self.verify()
        if interval not in self:
            #print(self.all_intervals)
            raise ValueError
        self.top_node = self.top_node.remove(interval)
        self.all_intervals.remove(interval)
        self._remove_boundaries(interval)
        #self.verify()
    
    def removei(self, begin, end, data=None):
        """
        Shortcut for remove(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.remove(Interval(begin, end, data))
    
    def discard(self, interval):
        """
        Removes an interval from the tree, if present. If not, does 
        nothing.
        
        Completes in O(log n) time.
        """
        if interval not in self:
            return
        self.all_intervals.discard(interval)
        self.top_node = self.top_node.discard(interval)
        self._remove_boundaries(interval)
    
    def discardi(self, begin, end, data=None):
        """
        Shortcut for discard(Interval(begin, end, data)).
        
        Completes in O(log n) time.
        """
        return self.discard(Interval(begin, end, data))

    def difference(self, other):
        """
        Returns a new tree, comprising all intervals in self but not
        in other.
        """
        ivs = set()
        for iv in self:
            if iv not in other:
                ivs.add(iv)
        return IntervalTree(ivs)

    def difference_update(self, other):
        """
        Removes all intervals in other from self.
        """
        for iv in other:
            self.discard(iv)

    def union(self, other):
        """
        Returns a new tree, comprising all intervals from self
        and other.
        """
        return IntervalTree(set(self).union(other))

    def intersection(self, other):
        """
        Returns a new tree of all intervals common to both self and
        other.
        """
        ivs = set()
        shorter, longer = sorted([self, other], key=len)
        for iv in shorter:
            if iv in longer:
                ivs.add(iv)
        return IntervalTree(ivs)

    def intersection_update(self, other):
        """
        Removes intervals from self unless they also exist in other.
        """
        for iv in self:
            if iv not in other:
                self.remove(iv)

    def symmetric_difference(self, other):
        """
        Return a tree with elements only in self or other but not
        both.
        """
        if not isinstance(other, set): other = set(other)
        me = set(self)
        ivs = me - other + (other - me)
        return IntervalTree(ivs)

    def symmetric_difference_update(self, other):
        """
        Throws out all intervals except those only in self or other,
        not both.
        """
        other = set(other)
        for iv in self:
            if iv in other:
                self.remove(iv)
                other.remove(iv)
        self.update(other)

    def remove_overlap(self, begin, end=None):
        """
        Removes all intervals overlapping the given point or range.
        
        Completes in O((r+m)*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * r = size of the search range (this is 1 for a point)
        """
        hitlist = self.search(begin, end)
        for iv in hitlist: 
            self.remove(iv)

    def remove_envelop(self, begin, end):
        """
        Removes all intervals completely enveloped in the given range.
        
        Completes in O((r+m)*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * r = size of the search range (this is 1 for a point)
        """
        hitlist = self.search(begin, end, strict=True)
        for iv in hitlist:
            self.remove(iv)

    def chop(self, begin, end, datafunc=None):
        """
        Like remove_envelop(), but trims back Intervals hanging into
        the chopped area so that nothing overlaps.
        """
        insertions = set()
        begin_hits = [iv for iv in self[begin] if iv.begin < begin]
        end_hits = [iv for iv in self[end] if iv.end > end]

        if datafunc:
            for iv in begin_hits:
                insertions.add(Interval(iv.begin, begin, datafunc(iv, True)))
            for iv in end_hits:
                insertions.add(Interval(end, iv.end, datafunc(iv, False)))
        else:
            for iv in begin_hits:
                insertions.add(Interval(iv.begin, begin, iv.data))
            for iv in end_hits:
                insertions.add(Interval(end, iv.end, iv.data))

        self.remove_envelop(begin, end)
        self.difference_update(begin_hits)
        self.difference_update(end_hits)
        self.update(insertions)

    def slice(self, point, datafunc=None):
        """
        Split Intervals that overlap point into two new Intervals. if
        specified, uses datafunc(interval, islower=True/False) to
        set the data field of the new Intervals.
        :param point: where to slice
        :param datafunc(interval, isupper): callable returning a new
        value for the interval's data field
        """
        hitlist = set(iv for iv in self[point] if iv.begin < point)
        insertions = set()
        if datafunc:
            for iv in hitlist:
                insertions.add(Interval(iv.begin, point, datafunc(iv, True)))
                insertions.add(Interval(point, iv.end, datafunc(iv, False)))
        else:
            for iv in hitlist:
                insertions.add(Interval(iv.begin, point, iv.data))
                insertions.add(Interval(point, iv.end, iv.data))
        self.difference_update(hitlist)
        self.update(insertions)

    def clear(self):
        """
        Empties the tree.

        Completes in O(1) tine.
        """
        self.__init__()

    def find_nested(self):
        """
        Returns a dictionary mapping parent intervals to sets of 
        intervals overlapped by and contained in the parent.
        
        Completes in O(n^2) time.
        :rtype: dict of [Interval, set of Interval]
        """
        result = {}
        
        def add_if_nested():
            if parent.contains_interval(child):
                if parent not in result:
                    result[parent] = set()
                result[parent].add(child)
                
        long_ivs = sorted(self.all_intervals, key=Interval.length, reverse=True)
        for i, parent in enumerate(long_ivs):
            for child in long_ivs[i + 1:]:
                add_if_nested()
        return result
    
    def overlaps(self, begin, end=None):
        """
        Returns whether some interval in the tree overlaps the given
        point or range.
        
        Completes in O(r*log n) time, where r is the size of the
        search range.
        :rtype: bool
        """
        if end is not None:
            return self.overlaps_range(begin, end)
        elif isinstance(begin, Number):
            return self.overlaps_point(begin)
        else:
            return self.overlaps_range(begin.begin, begin.end)
    
    def overlaps_point(self, p):
        """
        Returns whether some interval in the tree overlaps p.
        
        Completes in O(log n) time.
        :rtype: bool
        """
        if self.is_empty():
            return False
        return bool(self.top_node.contains_point(p))
    
    def overlaps_range(self, begin, end):
        """
        Returns whether some interval in the tree overlaps the given
        range. Returns False if given a null interval over which to
        test.
        
        Completes in O(r*log n) time, where r is the range length and n
        is the table size.
        :rtype: bool
        """
        if self.is_empty():
            return False
        elif begin >= end:
            return False
        elif self.overlaps_point(begin):
            return True
        return any(
            self.overlaps_point(bound) 
            for bound in self.boundary_table 
            if begin < bound < end
        )
    
    def split_overlaps(self):
        """
        Finds all intervals with overlapping ranges and splits them
        along the range boundaries.
        
        Completes in worst-case O(n^2*log n) time (many interval 
        boundaries are inside many intervals), best-case O(n*log n)
        time (small number of overlaps << n per interval).
        """
        if not self:
            return
        if len(self.boundary_table) == 2:
            return

        bounds = sorted(self.boundary_table)  # get bound locations

        new_ivs = set()
        for lbound, ubound in zip(bounds[:-1], bounds[1:]):
            for iv in self[lbound]:
                new_ivs.add(Interval(lbound, ubound, iv.data))

        self.__init__(new_ivs)

    def merge_overlaps(self, data_reducer=None, data_initializer=None):
        """
        Finds all intervals with overlapping ranges and merges them
        into a single interval. If provided, uses data_reducer and
        data_initializer with similar semantics to Python's built-in
        reduce(reducer_func[, initializer]), as follows:

        If data_reducer is set to a function, combines the data
        fields of the Intervals with
            current_reduced_data = data_reducer(current_reduced_data, new_data)
        If data_reducer is None, the merged Interval's data
        field will be set to None, ignoring all the data fields
        of the merged Intervals.

        On encountering the first Interval to merge, if
        data_initializer is None (default), uses the first
        Interval's data field as the first value for
        current_reduced_data. If data_initializer is not None,
        current_reduced_data is set to a shallow copy of
        data_initiazer created with
            copy.copy(data_initializer).

        Completes in O(n*logn).
        """
        if not self:
            return

        sorted_intervals = sorted(self.all_intervals)  # get sorted intervals
        merged = []
        # use mutable object to allow new_series() to modify it
        current_reduced = [None]
        higher = None  # iterating variable, which new_series() needs access to

        def new_series():
            if data_initializer is None:
                current_reduced[0] = higher.data
                merged.append(higher)
                return
            else:  # data_initializer is not None
                current_reduced[0] = copy(data_initializer)
                current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                merged.append(Interval(higher.begin, higher.end, current_reduced[0]))

        for higher in sorted_intervals:
            if merged:  # series already begun
                lower = merged[-1]
                if higher.begin <= lower.end:  # should merge
                    upper_bound = max(lower.end, higher.end)
                    if data_reducer is not None:
                        current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                    else:  # annihilate the data, since we don't know how to merge it
                        current_reduced[0] = None
                    merged[-1] = Interval(lower.begin, upper_bound, current_reduced[0])
                else:
                    new_series()
            else:  # not merged; is first of Intervals to merge
                new_series()

        self.__init__(merged)

    def merge_equals(self, data_reducer=None, data_initializer=None):
        """
        Finds all intervals with equal ranges and merges them
        into a single interval. If provided, uses data_reducer and
        data_initializer with similar semantics to Python's built-in
        reduce(reducer_func[, initializer]), as follows:

        If data_reducer is set to a function, combines the data
        fields of the Intervals with
            current_reduced_data = data_reducer(current_reduced_data, new_data)
        If data_reducer is None, the merged Interval's data
        field will be set to None, ignoring all the data fields
        of the merged Intervals.

        On encountering the first Interval to merge, if
        data_initializer is None (default), uses the first
        Interval's data field as the first value for
        current_reduced_data. If data_initializer is not None,
        current_reduced_data is set to a shallow copy of
        data_initiazer created with
            copy.copy(data_initializer).

        Completes in O(n*logn).
        """
        if not self:
            return

        sorted_intervals = sorted(self.all_intervals)  # get sorted intervals
        merged = []
        # use mutable object to allow new_series() to modify it
        current_reduced = [None]
        higher = None  # iterating variable, which new_series() needs access to

        def new_series():
            if data_initializer is None:
                current_reduced[0] = higher.data
                merged.append(higher)
                return
            else:  # data_initializer is not None
                current_reduced[0] = copy(data_initializer)
                current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                merged.append(Interval(higher.begin, higher.end, current_reduced[0]))

        for higher in sorted_intervals:
            if merged:  # series already begun
                lower = merged[-1]
                if higher.range_matches(lower):  # should merge
                    upper_bound = max(lower.end, higher.end)
                    if data_reducer is not None:
                        current_reduced[0] = data_reducer(current_reduced[0], higher.data)
                    else:  # annihilate the data, since we don't know how to merge it
                        current_reduced[0] = None
                    merged[-1] = Interval(lower.begin, upper_bound, current_reduced[0])
                else:
                    new_series()
            else:  # not merged; is first of Intervals to merge
                new_series()

        self.__init__(merged)

    def items(self):
        """
        Constructs and returns a set of all intervals in the tree. 
        
        Completes in O(n) time.
        :rtype: set of Interval
        """
        return set(self.all_intervals)
    
    def is_empty(self):
        """
        Returns whether the tree is empty.
        
        Completes in O(1) time.
        :rtype: bool
        """
        return 0 == len(self)

    def search(self, begin, end=None, strict=False):
        """
        Returns a set of all intervals overlapping the given range. Or,
        if strict is True, returns the set of all intervals fully
        contained in the range [begin, end].
        
        Completes in O(m + k*log n) time, where:
          * n = size of the tree
          * m = number of matches
          * k = size of the search range (this is 1 for a point)
        :rtype: set of Interval
        """
        root = self.top_node
        if not root:
            return set()
        if end is None:
            try:
                iv = begin
                return self.search(iv.begin, iv.end, strict=strict)
            except:
                return root.search_point(begin, set())
        elif begin >= end:
            return set()
        else:
            result = root.search_point(begin, set())

            boundary_table = self.boundary_table
            bound_begin = boundary_table.bisect_left(begin)
            bound_end = boundary_table.bisect_left(end)  # exclude final end bound
            result.update(root.search_overlap(
                # slice notation is slightly slower
                boundary_table.iloc[index] for index in xrange(bound_begin, bound_end)
            ))

            # TODO: improve strict search to use node info instead of less-efficient filtering
            if strict:
                result = set(
                    iv for iv in result
                    if iv.begin >= begin and iv.end <= end
                )
            return result
    
    def begin(self):
        """
        Returns the lower bound of the first interval in the tree.
        
        Completes in O(n) time.
        """
        if not self.boundary_table:
            return 0
        return self.boundary_table.iloc[0]
    
    def end(self):
        """
        Returns the upper bound of the last interval in the tree.
        
        Completes in O(n) time.
        """
        if not self.boundary_table:
            return 0
        return self.boundary_table.iloc[-1]

    def range(self):
        """
        Returns a minimum-spanning Interval that encloses all the
        members of this IntervalTree. If the tree is empty, returns
        null Interval.
        :rtype: Interval
        """
        return Interval(self.begin(), self.end())

    def span(self):
        """
        Returns the length of the minimum-spanning Interval that
        encloses all the members of this IntervalTree. If the tree
        is empty, return 0.
        """
        if not self:
            return 0
        return self.end() - self.begin()

    def print_structure(self, tostring=False):
        """
        ## FOR DEBUGGING ONLY ##
        Pretty-prints the structure of the tree. 
        If tostring is true, prints nothing and returns a string.
        :rtype: None or str
        """
        if self.top_node:
            return self.top_node.print_structure(tostring=tostring)
        else:
            result = "<empty IntervalTree>"
            if not tostring:
                print(result)
            else:
                return result
        
    def verify(self):
        """
        ## FOR DEBUGGING ONLY ##
        Checks the table to ensure that the invariants are held.
        """
        if self.all_intervals:
            ## top_node.all_children() == self.all_intervals
            try:
                assert self.top_node.all_children() == self.all_intervals
            except AssertionError as e:
                print(
                    'Error: the tree and the membership set are out of sync!'
                )
                tivs = set(self.top_node.all_children())
                print('top_node.all_children() - all_intervals:')
                try:
                    pprint
                except NameError:
                    from pprint import pprint
                pprint(tivs - self.all_intervals)
                print('all_intervals - top_node.all_children():')
                pprint(self.all_intervals - tivs)
                raise e

            ## All members are Intervals
            for iv in self:
                assert isinstance(iv, Interval), (
                    "Error: Only Interval objects allowed in IntervalTree:"
                    " {0}".format(iv)
                )

            ## No null intervals
            for iv in self:
                assert not iv.is_null(), (
                    "Error: Null Interval objects not allowed in IntervalTree:"
                    " {0}".format(iv)
                )

            ## Reconstruct boundary_table
            bound_check = {}
            for iv in self:
                if iv.begin in bound_check:
                    bound_check[iv.begin] += 1
                else:
                    bound_check[iv.begin] = 1
                if iv.end in bound_check:
                    bound_check[iv.end] += 1
                else:
                    bound_check[iv.end] = 1

            ## Reconstructed boundary table (bound_check) ==? boundary_table
            assert set(self.boundary_table.keys()) == set(bound_check.keys()),\
                'Error: boundary_table is out of sync with ' \
                'the intervals in the tree!'

            # For efficiency reasons this should be iteritems in Py2, but we
            # don't care much for efficiency in debug methods anyway.
            for key, val in self.boundary_table.items():
                assert bound_check[key] == val, \
                    'Error: boundary_table[{0}] should be {1},' \
                    ' but is {2}!'.format(
                        key, bound_check[key], val)

            ## Internal tree structure
            self.top_node.verify(set())
        else:
            ## Verify empty tree
            assert not self.boundary_table, \
                "Error: boundary table should be empty!"
            assert self.top_node is None, \
                "Error: top_node isn't None!"

    def score(self, full_report=False):
        """
        Returns a number between 0 and 1, indicating how suboptimal the tree
        is. The lower, the better. Roughly, this number represents the
        fraction of flawed Intervals in the tree.
        :rtype: float
        """
        if len(self) <= 2:
            return 0.0

        n = len(self)
        m = self.top_node.count_nodes()

        def s_center_score():
            """
            Returns a normalized score, indicating roughly how many times
            intervals share s_center with other intervals. Output is full-scale
            from 0 to 1.
            :rtype: float
            """
            raw = n - m
            maximum = n - 1
            return raw / float(maximum)

        report = {
            "depth": self.top_node.depth_score(n, m),
            "s_center": s_center_score(),
        }
        cumulative = max(report.values())
        report["_cumulative"] = cumulative
        if full_report:
            return report
        return cumulative


    def __getitem__(self, index):
        """
        Returns a set of all intervals overlapping the given index or 
        slice.
        
        Completes in O(k * log(n) + m) time, where:
          * n = size of the tree
          * m = number of matches
          * k = size of the search range (this is 1 for a point)
        :rtype: set of Interval
        """
        try:
            start, stop = index.start, index.stop
            if start is None:
                start = self.begin()
                if stop is None:
                    return set(self)
            if stop is None:
                stop = self.end()
            return self.search(start, stop)
        except AttributeError:
            return self.search(index)
    
    def __setitem__(self, index, value):
        """
        Adds a new interval to the tree. A shortcut for
        add(Interval(index.start, index.stop, value)).
        
        If an identical Interval object with equal range and data 
        already exists, does nothing.
        
        Completes in O(log n) time.
        """
        self.addi(index.start, index.stop, value)

    def __delitem__(self, point):
        """
        Delete all items overlapping point.
        """
        self.remove_overlap(point)

    def __contains__(self, item):
        """
        Returns whether item exists as an Interval in the tree.
        This method only returns True for exact matches; for
        overlaps, see the overlaps() method.
        
        Completes in O(1) time.
        :rtype: bool
        """
        # Removed point-checking code; it might trick the user into
        # thinking that this is O(1), which point-checking isn't.
        #if isinstance(item, Interval):
        return item in self.all_intervals
        #else:
        #    return self.contains_point(item)
    
    def containsi(self, begin, end, data=None):
        """
        Shortcut for (Interval(begin, end, data) in tree).
        
        Completes in O(1) time.
        :rtype: bool
        """
        return Interval(begin, end, data) in self
    
    def __iter__(self):
        """
        Returns an iterator over all the intervals in the tree.
        
        Completes in O(1) time.
        :rtype: collections.Iterable[Interval]
        """
        return self.all_intervals.__iter__()
    iter = __iter__
    
    def __len__(self):
        """
        Returns how many intervals are in the tree.
        
        Completes in O(1) time.
        :rtype: int
        """
        return len(self.all_intervals)
    
    def __eq__(self, other):
        """
        Whether two IntervalTrees are equal.
        
        Completes in O(n) time if sizes are equal; O(1) time otherwise.
        :rtype: bool
        """
        return (
            isinstance(other, IntervalTree) and 
            self.all_intervals == other.all_intervals
        )
    
    def __repr__(self):
        """
        :rtype: str
        """
        ivs = sorted(self)
        if not ivs:
            return "IntervalTree()"
        else:
            return "IntervalTree({0})".format(ivs)

    __str__ = __repr__

    def __reduce__(self):
        """
        For pickle-ing.
        :rtype: tuple
        """
        return IntervalTree, (sorted(self.all_intervals),)