1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
|
Python iRODS Client (PRC)
=========================
[iRODS](https://www.irods.org) is an open source distributed data management system. This is a client API implemented in Python.
Currently supported:
- Python 3.6 or later
- Establish a (secure) connection to iRODS
- Authenticate via password, GSI, PAM
- GenQuery and Specific Queries
- GenQuery2
- Manage collections, data objects, and permissions
- Checksum data objects
- Replicate data objects
- Parallel PUT/GET data objects
- Read, write, and seek operations
- Register files and directories
- Manage users and groups
- Manage resources
- Manage and execute iRODS rules
- Manage metadata
- Manage ticket-based access
Installing
----------
Install via pip:
pip install python-irodsclient
or:
pip install git+https://github.com/irods/python-irodsclient.git[@branch|@commit|@tag]
Uninstalling
------------
pip uninstall python-irodsclient
Establishing a (secure) connection
----------------------------------
One way of starting a session is to pass iRODS credentials as keyword
arguments:
```python
>>> from irods.session import iRODSSession
>>> with iRODSSession(host='localhost', port=1247, user='bob', password='1234', zone='tempZone') as session:
... # workload
...
>>>
```
If you're an administrator acting on behalf of another user:
```python
>>> from irods.session import iRODSSession
>>> with iRODSSession(host='localhost', port=1247, user='rods', password='1234', zone='tempZone', client_user='bob',
client_zone='possibly_another_zone') as session:
... # workload
...
>>>
```
If no `client_zone` is provided, the `zone` parameter is used in its place.
Using environment files (including any SSL settings) in `~/.irods/`:
```python
>>> import os
>>> import ssl
>>> from irods.session import iRODSSession
>>> try:
... env_file = os.environ['IRODS_ENVIRONMENT_FILE']
... except KeyError:
... env_file = os.path.expanduser('~/.irods/irods_environment.json')
...
>>> ssl_settings = {} # Or, optionally: {'ssl_context': <user_customized_SSLContext>}
>>> with iRODSSession(irods_env_file=env_file, **ssl_settings) as session:
... # workload
...
>>>
```
In the above example, an SSL connection can be made even if no
'ssl_context' argument is specified, in which case the Python client
internally generates its own SSLContext object to best match the iRODS
SSL configuration parameters (such as
"irods_ssl_ca_certificate_file", etc.) used to initialize the
iRODSSession. Those parameters can be given either in the environment
file, or in the iRODSSession constructor call as shown by the next
example.
A pure Python SSL session (without a local `env_file` requires a few more things defined:
```python
>>> import ssl
>>> from irods.session import iRODSSession
>>> ssl_settings = {'client_server_negotiation': 'request_server_negotiation',
... 'client_server_policy': 'CS_NEG_REQUIRE',
... 'encryption_algorithm': 'AES-256-CBC',
... 'encryption_key_size': 32,
... 'encryption_num_hash_rounds': 16,
... 'encryption_salt_size': 8,
... 'ssl_context': ssl_context
... 'ssl_verify_server': 'cert',
... 'ssl_ca_certificate_file': '/etc/irods/ssl/irods.crt'
... }
```
If necessary, a user may provide a custom SSLContext object; although,
as of release v1.1.6, this will rarely be required:
```python
>>> ssl_settings ['ssl_context'] = ssl.create_default_context(purpose=ssl.Purpose.SERVER_AUTH, # ... other options
... )
```
At this point, we are ready to instantiate and use the session:
```python
>>> with iRODSSession(host='irods-provider', port=1247, user='bob', password='1234', zone='tempZone', **ssl_settings) as session:
... # workload
```
Note that the `irods_` prefix is unnecessary when providing
the `encryption_*` and `ssl_*` options
directly to the constructor as keyword arguments, even though it is
required when they are placed in the environment file.
Creating PAM or Native Credentials File (.irodsA)
-------------------------------------------------
Two free functions exist for creating encoded authentication files:
```
irods.client_init.write_native_credentials_to_secrets_file
irods.client_init.write_pam_credentials_to_secrets_file
```
Each takes a cleartext password and writes an appropriately processed version of it
into an .irodsA (secrets) file in the login environment.
Examples:
For the `native` authentication scheme, we can use the currently set iRODS password to create the .irodsA file directly:
```python
import irods.client_init as iinit
iinit.write_native_credentials_to_secrets_file(irods_password)
```
Note, in the `pam_password` case, this involves sending the cleartext password
to the server (SSL must be enabled!) and then writing the scrambled token that
is returned from the transaction.
If an .irodsA file exists already, it will be overwritten by default; however, if these functions'
overwrite parameter is set to `False`, an exception of type `irods.client_init.irodsA_already_exists`
will be raised to indicate the older .irodsA file is present.
For the `pam_password` authentication scheme, we must first ensure an `irods_environment.json` file exists in the
client environment (necessary for establishing SSL/TLS connection parameters as well as obtaining a PAM token from the server after connecting)
and then make the call to write .irodsA using the Bash commands:
```bash
$ cat > ~/.irods/irods_environment.json << EOF
{
"irods_user_name":"rods",
"irods_host":"server-hostname",
... [all other connection settings, including SSL parameters, needed for communication with iRODS] ...
}
EOF
$ python -c "import irods.client_init as iinit; iinit.write_pam_credentials_to_secrets_file(pam_cleartext_password)"
```
PAM logins
----------
Since v2.0.0, the Python iRODS Client is able to authenticate via PAM using the same file-based client environment as the
iCommands.
Caveat for iRODS 4.3+: when upgrading from 4.2, the "irods_authentication_scheme" setting must be changed from "pam" to "pam_password" in
`~/.irods/irods_environment.json` for all file-based client environments.
To use the PRC PAM login credentials update function for the client login environment, we can set these two configuration variables:
```
legacy_auth.pam.password_for_auto_renew "my_pam_password"
legacy_auth.pam.store_password_to_environment True
```
Optionally, the `legacy_auth.pam.time_to_live_in_hours` may also be set to determine the time-to-live for the new password.
Leaving it at the default value defers this decision to the server.
Maintaining a connection
------------------------
The default library timeout for a connection to an iRODS Server is 120 seconds.
This can be overridden by changing the session `connection_timeout` immediately after creation of the
session object:
```python
>>> session.connection_timeout = 300
```
This will set the timeout to five minutes for any associated connections.
Timeouts are either a positive `int` or `float` with units of seconds, or `None`, all in accordance with their
meaning in the context of the socket module. A value of `None` indicates timeouts are effectively
infinite in value, i.e. turned off. Setting a session's `connection_timeout` value to 0 is disallowed
because this would cause the socket to enter non-blocking mode.
Session objects and cleanup
---------------------------
When iRODSSession objects are kept as state in an application, spurious
SYS_HEADER_READ_LEN_ERR errors can sometimes be seen in the
connected iRODS server's log file. This is frequently seen at program
exit because socket connections are terminated without having been
closed out by the session object's cleanup() method.
Since v0.9.0, code has been included in the session
object's `__del__` method to call cleanup(), properly closing out
network connections. However, `__del__` is not guaranteed to run as
expected, so an alternative may be to call `session.cleanup()`
on any session variable which will not be used again.
Simple PUTs and GETs
--------------------
We can use the just-created session object to put files to (or get them
from) iRODS.
```python
>>> logical_path = "/{0.zone}/home/{0.username}/{1}".format(session,"myfile.dat")
>>> session.data_objects.put("myfile.dat", logical_path)
>>> session.data_objects.get(logical_path, "/tmp/myfile.dat.copy")
```
Note that local file paths may be relative, but iRODS data objects must
always be referred to by their absolute paths. This is in contrast to
the `iput` and `iget` icommands, which keep track of the current working
collection (as modified by `icd`) for the unix shell.
Note also that PRC `put()` is actually using the `open`, `write`, and `close` APIs, rather than the
iRODS PUT API directly. This is transparent to the caller, but an administrator
should take note as this affects which policy enforcement points (PEPs) are executed
on the iRODS server.
Parallel Transfer
-----------------
Since v0.9.0, data object transfers using `put()` and `get()`
will spawn a number of threads in order to optimize performance for
iRODS server versions 4.2.9+ and file sizes larger than a default
threshold value of 32 Megabytes.
Progress bars
-------------
The PRC supports progress bars which function on the basis of
an "update" callback function. In the case of a tqdm progress bar (see https://github.com/tqdm/tqdm), you can always just
pass the update method of the progress bar instance directly to the data_object
`put` or `get` method:
```python
pbar = tqdm.tqdm(total = data_obj.size)
session.data_objects.get(file_name, data_obj.path, updatables = pbar.update)
```
The updatables parameter can be a list or tuple of update-enabling objects and/or bound methods.
Alternatively, the tqdm progress bar object itself can be passed in, if an adapting
function such as the following is first registered:
```python
def adapt_tqdm(pbar, l = threading.Lock()):
def _update(n):
with l:
pbar.update(n)
return _update
irods.manager.data_objects_manager.register_update_type( adapt_tqdm )
session.data_objects.put( file, logical_path, updatables = [tqdm_1,tqdm_2] ) # update two tqdm's simultaneously
```
Other progress bars may be included in an updatables parameter, but may require more extensive adaptation.
For example, the ProgressBar object (from the progressbar module) also has an update method, but it
takes an up-to-date cumulative byte-count, instead of the size of an individual transfer in bytes,
as its sole parameter. There can be other complications: e.g. a ProgressBar instance does not allow a weak
reference to itself to be formed, which interferes with the Python iRODS Client's internal scheme of accounting
for progress bar instances "still in progress" while also preventing resource leaks.
In such cases, it is probably best to implement a wrapper for the progress
bar in question, and submit the wrapper instance as the updatable parameter. Whether
a wrapper or the progress bar object itself is thus employed, it is recommended that the user take steps to
ensure the lifetime of the updatable instance extends beyond the time needed for the transfer to complete.
See `irods/test/data_obj_test.py` for examples of these and other subtleties of progress bar usage.
Working with collections (directories)
--------------------------------------
```python
>>> coll = session.collections.get("/tempZone/home/rods")
>>> coll.id
45798
>>> coll.path
/tempZone/home/rods
>>> for col in coll.subcollections:
>>> print(col)
<iRODSCollection /tempZone/home/rods/subcol1>
<iRODSCollection /tempZone/home/rods/subcol2>
>>> for obj in coll.data_objects:
>>> print(obj)
<iRODSDataObject /tempZone/home/rods/file.txt>
<iRODSDataObject /tempZone/home/rods/file2.txt>
```
Create a new collection:
```python
>>> coll = session.collections.create("/tempZone/home/rods/testdir")
>>> coll.id
45799
```
Working with data objects (files)
---------------------------------
Create a new data object:
```python
>>> obj = session.data_objects.create("/tempZone/home/rods/test1")
<iRODSDataObject /tempZone/home/rods/test1>
```
Get an existing data object:
```python
>>> obj = session.data_objects.get("/tempZone/home/rods/test1")
>>> obj.id 12345
>>> obj.name
test1
>>> obj.collection
<iRODSCollection /tempZone/home/rods>
>>> for replica in obj.replicas:
... print(replica.resource_name)
... print(replica.number)
... print(replica.path)
... print(replica.status)
...
demoResc
0
/var/lib/irods/Vault/home/rods/test1
1
```
Using the `put()` method rather than the `create()` method will trigger different policy enforcement points (PEPs) on the server.
Put an existing file as a new data object:
```python
>>> session.data_objects.put("test.txt", "/tempZone/home/rods/test2")
>>> obj2 = session.data_objects.get("/tempZone/home/rods/test2")
>>> obj2.id
56789
```
Specifying paths
----------------
Path strings for collection and data objects are usually expected to be
absolute in most contexts in the PRC. They must also be normalized to a
form including single slashes separating path elements and no slashes at
the string's end. If there is any doubt that a path string fulfills
this requirement, the wrapper class `irods.path.iRODSPath` (a subclass of `str`) may be used to normalize it:
if not session.collections.exists( iRODSPath( potentially_unnormalized_path )): #....
The wrapper serves also as a path joiner; thus:
iRODSPath( zone, "home", user )
may replace:
"/".join(["", zone, "home", user])
`iRODSPath` has been available since v1.1.2.
Reading and writing files
-------------------------
PRC provides [file-like
objects](https://docs.python.org/3/glossary.html#term-file-object) for reading and writing files.
```python
>>> obj = session.data_objects.get("/tempZone/home/rods/test1")
>>> with obj.open('r+') as f:
... f.write('foonbarn')
... f.seek(0,0)
... for line in f:
... print(line)
...
foo
bar
```
Since v1.1.9, there is also an auto-close configuration setting for data
objects, set to `False` by default, which may be assigned
the value `True` for guaranteed auto-closing of open data
object handles at the proper time.
In a small but illustrative example, the following Python session does
not require an explicit call to `f.close()`:
```python
>>> import irods.client_configuration as config, irods.test.helpers as helpers
>>> config.data_objects.auto_close = True
>>> session = helpers.make_session()
>>> f = session.data_objects.open('/{0.zone}/home/{0.username}/new_object.txt'.format(session),'w')
>>> f.write(b'new content.')
```
This may be useful for Python programs in which frequent flushing of
write updates to data objects is undesirable -- with descriptors on such
objects possibly being held open for indeterminately long lifetimes --
yet the eventual application of those updates prior to the teardown of
the Python interpreter is required.
The current value of the setting is global in scope (i.e. applies to all
sessions, whenever created) and is always consulted for the creation of
any data object handle to govern that handle's cleanup behavior.
Also, alternatively, the client may opt into a special "redirect" behavior
in which data objects' `open()` method makes a new connection directly to whichever
iRODS server is found to host the selected replica. Data reads and
writes will therefore happen on that alternate network route, instead of
through the originally-connected server. Though not the client's default
behavior, this approach can turn out to be more efficient, particularly
if several concurrent data uploads ("puts") and downloads ("gets") are
happening which might increase traffic on the client's main communication
route with the server. (See, in [Python iRODS Client Settings File](#python-irods-client-settings-file),
the client configuration setting `data_objects.allow_redirect`, which may be
set to True to designate the opt-in.)
Python iRODS Client Settings File
---------------------------------
Since v1.1.9, Python iRODS client configuration can be saved in, and
loaded from, a settings file.
If the settings file exists, each of its lines contains (a) a dotted
name identifying a particular configuration setting to be assigned
within the PRC, potentially changing its runtime behavior; and (b) the
specific value, in Python "repr"-style format, that should be assigned
into it.
An example follows:
```
data_objects.auto_close True
```
New dotted names may be created following the example of the one valid
example created thus far, `data_objects.auto_close]`,
initialized in `irods/client_configuration/__init__.py`.
Each such name should correspond to a globally set value which the PRC
routinely checks when performing the affected library function.
The use of a settings file can be indicated, and the path to that file
determined, by setting the environment variable:
`PYTHON_IRODSCLIENT_CONFIGURATION_PATH`. If this variable
is present but empty, this denotes use of a default settings file path
of `~/.python-irodsclient`; if the variable's value is of
non-zero length, the value should be an absolute path to the desired settings
file location. Also, if the variable is set, auto-load of
settings will be performed, meaning that the act of importing
`irods` or any of its submodules will cause the automatic
loading of the settings from the settings file, assuming it exists.
(Failure to find the file at the indicated path will be logged as a
warning.)
Settings can also be saved and loaded manually using the `save()` and
`load()` functions in the `irods.client_configuration`
module. Each of these functions accepts an optional `file`
parameter which, if set to a non-empty string, will override the
settings file path currently "in force" (i.e., the
CONFIG_DEFAULT_PATH, as optionally overridden by the environment
variable PYTHON_IRODSCLIENT_CONFIGURATION_PATH).
Configuration settings may also be individually overridden by defining
certain environment variables:
- Setting: Auto-close option for all data objects.
- Dotted Name: `data_objects.auto_close`
- Type: `bool`
- Default Value: `False`
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__DATA_OBJECTS__AUTO_CLOSE`
- Setting: Let a call to data object open() redirect to the server whose storage resource hosts the given object's preferred replica.
- Dotted Name: `data_objects.allow_redirect`
- Type: `bool`
- Default Value: `False`
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__DATA_OBJECTS__ALLOW_REDIRECT`
- Setting: Number of hours to request for the new password entry's TTL (Time To Live) when auto-renewing PAM-authenticated sessions.
- Dotted Name: `legacy_auth.pam.time_to_live_in_hours`
- Type: `int`
- Default Value: `0` (Meaning: conform to server's default TTL value.)
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__LEGACY_AUTH__PAM__TIME_TO_LIVE_IN_HOURS`
- Setting: Plaintext PAM password value, to be used when auto-renewing PAM-authenticated sessions because TTL has expired.
- Dotted Name: `legacy_auth.pam.password_for_auto_renew`
- Type: `str`
- Default Value: `""` (Meaning: no password is set, and thus no automatic attempts will be made at auto-renewing PAM authentication.)
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__LEGACY_AUTH__PAM__PASSWORD_FOR_AUTO_RENEW`. (But note that use of the environment variable could pose a threat to password security.)
- Setting: Whether to write the (native encoded) new hashed password to the iRODS password file. This step is only performed while auto-renewing PAM authenticated sessions.
- Dotted Name: `legacy_auth.pam.store_password_to_environment`
- Type: `bool`
- Default Value: `False`
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__LEGACY_AUTH__PAM__STORE_PASSWORD_TO_ENVIRONMENT`
- Setting: Force the use of PAM_AUTH_REQUEST_AN API for entering a new PAM password into the catalog. This API accommodates longer passwords and avoids the step of parsing a semicolon-delimited
"context" parameter.
- Dotted Name: `legacy_auth.pam.force_use_of_dedicated_pam_api`
- Type: `bool`
- Default Value: `False`
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__LEGACY_AUTH__PAM__FORCE_USE_OF_DEDICATED_PAM_API`
- Setting: Default choice of XML parser for all new threads.
- Dotted Name: `connections.xml_parser_default`
- Type: `str`
- Default Value: `"STANDARD_XML"`
- Possible Values: Any of `["STANDARD_XML", "QUASI_XML", "SECURE_XML"]`
- Environment Variable Override: `PYTHON_IRODSCLIENT_CONFIG__CONNECTIONS__XML_PARSER_DEFAULT`
For example, if `~/.python_irodsclient` contains the line :
```
connections.xml_parser_default "QUASI_XML"
```
then the session below illustrates the effect of defining the
appropriate environment variable. Note the value stored in the variable
must be a valid input for `ast.literal_eval()`; that is, a
primitive Pythonic value - and quoted, for instance, if a string.
```bash
$ PYTHON_IRODSCLIENT_CONFIGURATION_PATH="" \
PYTHON_IRODSCLIENT_CONFIG__CONNECTIONS__XML_PARSER_DEFAULT="'SECURE_XML'" \
python -c "import irods.message, irods.client_configuration as c; print (irods.message.default_XML_parser())"
XML_Parser_Type.SECURE_XML
$ PYTHON_IRODSCLIENT_CONFIGURATION_PATH="" \
python -c "import irods.message, irods.client_configuration as c; print (irods.message.default_XML_parser())"
XML_Parser_Type.QUASI_XML
```
Computing and Retrieving Checksums
----------------------------------
Each data object may be associated with a checksum by calling `chksum()`
on the object in question. Various behaviors can be elicited by passing
in combinations of keywords (for a description of which, please consult
the [header documentation](https://github.com/irods/irods/blob/4-3-stable/lib/api/include/irods/dataObjChksum.h).)
As with most other iRODS APIs, it is straightforward to specify keywords
by adding them to an options dictionary:
```python
>>> data_object_1.chksum() # - computes the checksum if already in the catalog, otherwise computes and stores it
... # (i.e. default behavior with no keywords passed in.)
>>> from irods.manager.data_object_manager import Server_Checksum_Warning
>>> import irods.keywords as kw
>>> opts = { kw.VERIFY_CHKSUM_KW:'' }
>>> try:
... data_object_2.chksum( **opts ) # - Uses verification option. (Does not create or save a checksum in the catalog).
... # or:
... opts[ kw.NO_COMPUTE_KW ] = ''
... data_object_2.chksum( **opts ) # - Uses both verification and no-compute options. (Like `ichksum -K --no-compute`)
... except Server_Checksum_Warning:
... print('some checksums are missing or wrong')
```
Additionally, if a freshly created `irods.message.RErrorStack` instance is
given, information can be returned and read by the client:
```python
>>> from irods.message import RErrorStack
>>> r_err_stk = RErrorStack()
>>> warn = None
>>> try: # Here, data_obj has one replica, not yet checksummed.
... data_obj.chksum( r_error = r_err_stk , **{kw.VERIFY_CHKSUM_KW:''} )
... except Server_Checksum_Warning as exc:
... warn = exc
>>> print(r_err_stk)
[RError<message = u'WARNING: No checksum available for replica [0].', status = -862000 CAT_NO_CHECKSUM_FOR_REPLICA>]
```
Working with metadata
---------------------
Showing the Attribute-Value-Units (AVUs) on an object with no metadata attached shows an empty list:
```python
>>> from irods.meta import iRODSMeta
>>> obj = session.data_objects.get("/tempZone/home/rods/test1")
>>> print(obj.metadata.items())
[]
```
Adding multiple AVUs with the same name field:
```python
>>> obj.metadata.add('key1', 'value1', 'units1')
>>> obj.metadata.add('key1', 'value2')
>>> obj.metadata.add('key2', 'value3')
>>> obj.metadata.add('key2', 'value4')
>>> print(obj.metadata.items())
[<iRODSMeta 13182 key1 value1 units1>, <iRODSMeta 13185 key2 value4 None>,
<iRODSMeta 13183 key1 value2 None>, <iRODSMeta 13184 key2 value3 None>]
```
We can also use Python's item indexing syntax to perform the equivalent
of an "imeta set \...", e.g. overwriting all AVUs with a name field
of "key2" in a single update:
```python
>>> new_meta = iRODSMeta('key2','value5','units2')
>>> obj.metadata\[new_meta.name\] = new_meta
>>> print(obj.metadata.items())
[<iRODSMeta 13182 key1 value1 units1>, <iRODSMeta 13183 key1 value2 None>,
<iRODSMeta 13186 key2 value5 units2>]
```
With only one AVU on the object with a name of "key2", *get_one*
is assured of not throwing an exception:
```python
>>> print(obj.metadata.get_one('key2'))
<iRODSMeta 13186 key2 value5 units2>
```
However, the same is not true of "key1":
```python
>>> print(obj.metadata.get_one('key1'))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/[...]/python-irodsclient/irods/meta.py", line 41, in get_one
raise KeyError
KeyError
```
Finally, to remove a specific AVU from an object:
```python
>>> obj.metadata.remove('key1', 'value1', 'units1')
>>> print(obj.metadata.items())
[<iRODSMeta 13186 key2 value5 units2>, <iRODSMeta 13183 key1 value2 None>]
```
Alternately, this form of the `remove()` method can also be useful:
```python
>>> for avu in obj.metadata.items():
... obj.metadata.remove(avu)
>>> print(obj.metadata.items())
[]
```
If we intended on deleting the data object anyway, we could have just
done this instead:
```
>>> obj.unlink(force=True)
```
But notice that the force option is important, since a data object in
the trash may still have AVUs attached.
At the end of a long session of AVU add/manipulate/delete operations,
one should make sure to delete all unused AVUs. We can in fact use any
`*Meta` data model in the queries below, since unattached AVUs are
not aware of the (type of) catalog object they once annotated:
```python
>>> from irods.models import (DataObjectMeta, ResourceMeta)
>>> len(list( session.query(ResourceMeta) ))
4
>>> from irods.test.helpers import remove_unused_metadata
>>> remove_unused_metadata(session)
>>> len(list( session.query(ResourceMeta) ))
0
```
When altering a fetched iRODSMeta, we must copy it first to avoid
errors, due to the fact the reference is cached by the iRODS object
reference. A shallow copy is sufficient:
```python
>>> meta = album.metadata.items()[0]
>>> meta.units
'quid'
>>> import copy; meta = copy.copy(meta); meta.units = 'pounds sterling'
>>> album.metadata[ meta.name ] = meta
```
Since v1.1.4, `set()` can be used instead:
```python
>>> album.metadata.set( meta )
```
In versions of iRODS 4.2.12 and later, we can also do:
```python
>>> album.metadata.set( meta, \*\*{kw.ADMIN_KW: ''} )
```
or even:
```python
>>> album.metadata(admin = True)\[meta.name\] = meta
```
Since v1.1.5, the "timestamps" keyword is provided to enable the loading
of create and modify timestamps for every AVU returned from the server:
```python
>>> avus = album.metadata(timestamps = True).items()
>>> avus[0].create_time
datetime.datetime(2022, 9, 19, 15, 26, 7)
```
Atomic operations on metadata
-----------------------------
Since iRODS 4.2.8, the atomic metadata API
allows a group of metadata add and remove operations to be performed
transactionally, within a single call to the server. This capability is available
since PRC v0.8.6.
For example, if 'obj' is a handle to an object in the iRODS
catalog (whether a data object, collection, user, or storage resource),
we can send an arbitrary number of AVUOperation instances to be executed
together as one indivisible operation on that object:
```python
>>> from irods.meta import iRODSMeta, AVUOperation
>>> obj.metadata.apply_atomic_operations( AVUOperation(operation='remove', avu=iRODSMeta('a1','v1','these_units')),
... AVUOperation(operation='add', avu=iRODSMeta('a2','v2','those_units')),
... AVUOperation(operation='remove', avu=iRODSMeta('a3','v3')) \# , ...
... )
```
The list of operations are applied in the order given, so that a
"remove" followed by an "add" of the same AVU is, in effect, a
metadata "set" operation. Also note that a "remove" operation will
be ignored if the AVU value given does not exist on the target object at
that point in the sequence of operations.
We can also source from a pre-built list of AVUOperations using
Python's `f(*args_list)` syntax. For example, this
function uses the atomic metadata API to very quickly remove all AVUs
from an object:
```python
>>> def remove_all_avus( Object ):
... avus_on_Object = Object.metadata.items()
... Object.metadata.apply_atomic_operations( *[AVUOperation(operation='remove', avu=i) for i in avus_on_Object] )
```
Extracting JSON encoded server information in case of error
-----------------------------------------------------------
Some server APIs, including atomic metadata and replica truncation, can fail for various reasons and generate an
exception. In these cases the message object returned from the server is made available in the 'server_msg' attribute
of the iRODSException object.
This enables an approach like the following, which logs server information possibly underlying the error that was evoked:
```python
try:
Object.metadata.apply_atomic_operations( ops )
# or:
DataObject.replica_truncate( size )
except iRODSException as exc:
log.error('Server API call failure. Traceback = %r ; iRODS Server info = %r',
traceback.extract_tb(sys.exc_info()[2]),
exc.server_msg.get_json_encoded_struct())
```
For `DataObject.replica_truncate(...)`, note that `exc.server_msg.get_json_encoded_struct()` can be used in the exception-handling
code path to retrieve the same information that would have been routinely returned from the truncate call itself, had it actually
completed without error.
Special Characters
------------------
iRODS supports Unicode characters into collection and
data object names. However, certain non-printable ASCII characters, in addition to
the backquote character, have historically presented problems
- especially for clients using the iRODS human readable XML protocol.
Consider this small, contrived application:
```python
from irods.test.helpers import make_session
def create_notes( session, obj_name, content = u'' ):
get_home_coll = lambda ses: "/{0.zone}/home/{0.username}".format(ses)
path = get_home_coll(session) + "/" + obj_name
with session.data_objects.open(path,"a") as f:
f.seek(0, 2) # SEEK_END
f.write(content.encode('utf8'))
return session.data_objects.get(path)
with make_session() as session:
# Example 1 : exception thrown when name has non-printable character
try:
create_notes( session, "lucky\033.dat", content = u'test' )
except:
pass
# Example 2 (Ref. issue: irods/irods #4132, fixed for 4.2.9 release of iRODS)
print(
create_notes( session, "Alice's diary").name # note diff (' != ') in printed name
)
```
This creates two data objects, but with less than optimal success. The
first example object is created but receives no content because an
exception is thrown trying to query its name after creation. In the
second example, for iRODS 4.2.8 and before, a deficiency in packStruct
XML protocol causes the backtick to be read back as an apostrophe, which
could create problems manipulating or deleting the object later.
Since v1.1.0, both problems can be mitigated by switching in the
QUASI_XML parser for the default one:
```
from irods.message import (XML_Parser_Type, ET)
ET( XML_Parser_Type.QUASI_XML,
server_version = session.server_version
)
```
The server_version parameter can be used independently to change the
current thread's choice of entities during QUASI_XML transactions with the server.
(This is only a concern when interacting with servers before iRODS 4.2.9.)
```
ET(server_version = (4,2,8))
```
Two dedicated environment variables may also be used to customize the
Python client's XML parsing behavior via the setting of global defaults
during start-up.
For example, we can set the default parser to QUASI_XML, optimized for
use with version 4.2.8 of the iRODS server, in the following manner:
```
Bash-Shell> export PYTHON_IRODSCLIENT_DEFAULT_XML=QUASI_XML PYTHON_IRODSCLIENT_QUASI_XML_SERVER_VERSION=4,2,8
```
Other alternatives for PYTHON_IRODSCLIENT_DEFAULT_XML are
"STANDARD_XML" and "SECURE_XML". These two latter options denote
use of the xml.etree and defusedxml modules, respectively.
Only the choice of "QUASI_XML" is affected by the specification of a
particular server version.
These global defaults, once set, may be overridden on
a per-thread basis using `ET(parser_type, server_version)`.
The current thread's XML parser can always be reverted to the global default by the
explicit use of `ET(None)`. However, when frequently switching back and forth between
parsers, it may be more convenient to use the `xml_mode` context manager:
```
# ... Interactions with the server now use the default XML parser.
from irods.helpers import xml_mode
with xml_mode('QUASI_XML'):
# ... Interactions with the server, in the current thread, temporarily use QUASI_XML
# ... We have now returned to using the default XML parser.
```
Application Cleanup
-------------------
Using the `irods.at_client_exit` module, we may register user-defined functions to be executed at or around the
time when the Python iRODS Client is engaged in object teardown (also called "cleanup") operations.
This is analogous to Python's [atexit module](https://docs.python.org/3/library/atexit.html#module-atexit),
except that here we have the extra resolution to specify that a function or callable object be expressly before,
or expressly after, aforementioned object teardown stage:
```python
from irods import at_client_exit
at_client_exit.register_for_execution_after_prc_cleanup(lambda: print("PRC cleanup has completed."))
at_client_exit.register_for_execution_before_prc_cleanup(lambda: print("PRC cleanup is about to start."))
```
A function normally cannot be registered multiple times to run in the same stage, but we may overcome this limitation
(and, optionally, arguments set for the invocation) by wrapping the same function into two different callable objects:
```python
def print_exit_message(n):
print(f"Called just after PRC cleanup - iteration {n}")
for n_iter in (1,2):
at_client_exit.register_for_execution_after_prc_cleanup(
at_client_exit.unique_function_invocation(print_exit_message, tup_args = (n_iter,))
)
```
The output of the above, upon script exit, will be:
```
Called just after PRC cleanup - iteration 2
Called just after PRC cleanup - iteration 1
```
which may be reversed from the order that one might expect. This is because -- similarly as with Python atexit module, and
consistently with the teardown of higher abstractions before lower ones -- functions _registered_ later within a given cleanup
stage will actually be _executed_ sooner (i.e. in "LIFO" order).
Rule Execution
--------------
The following example shows how to execute an iRODS rule from the Python iRODS client.
A rule file `native1.r` contains a rule in the native iRODS Rule Language:
```
main() {
writeLine("*stream",
*X ++ " squared is " ++ str(double(*X)^2) )
}
INPUT *X="3", *stream="serverLog"
OUTPUT null
```
The following Python client code will run the rule and produce the
appropriate output in the iRODS server log:
```
r = irods.rule.Rule( session, rule_file = 'native1.r')
r.execute()
```
Since v1.1.1, not only can we target a specific rule engine
instance by name (which is useful when more than one is present), but we
can also use a file-like object for the `rule_file`
parameter:
```
Rule( session, rule_file = io.StringIO(u'''mainRule() { anotherRule(*x); writeLine('stdout',*x) }\n'''
u'''anotherRule(*OUT) {*OUT='hello world!'}\n\n'''
u'''OUTPUT ruleExecOut\n'''),
instance_name = 'irods_rule_engine_plugin-irods_rule_language-instance' )
```
If we wanted to change the `native1.r` rule
code print to `stdout`, we could set the `INPUT`
parameter, `*stream`, using the Rule constructor's
`params` keyword argument. Similarly, we can change the
`OUTPUT` parameter from `null` to
`ruleExecOut`, to accommodate the output stream, via the
`output` argument:
```
r = irods.rule.Rule( session, rule_file = 'native1.r',
instance_name = 'irods_rule_engine_plugin-irods_rule_language-instance',
params={'*stream':'"stdout"'} , output = 'ruleExecOut' )
output = r.execute( )
if output and len(output.MsParam_PI):
buf = output.MsParam_PI[0].inOutStruct.stdoutBuf.buf
if buf: print(buf.rstrip(b'\0').decode('utf8'))
```
To deal with errors resulting from rule execution failure, two
approaches can be taken. Suppose we have defined this in the
`/etc/irods/core.re` rule base:
```
rule_that_fails_with_error_code(*x) {
*y = (if (*x!="") then int(*x) else 0)
# if (SOME_PROCEDURE_GOES_WRONG) {
if (*y < 0) { failmsg(*y,"-- my error message --"); } #-> throws an error code of int(*x) in REPF
else { fail(); } #-> throws FAIL_ACTION_ENCOUNTERED_ERR in REPF
# }
}
```
We can run the rule thus:
```python
>>> Rule( session, body='rule_that_fails_with_error_code(""), instance_name = 'irods_rule_engine_plugin-irods_rule_language-instance',
... ).execute( r_error = (r_errs:= irods.message.RErrorStack()) )
```
Where we've used the Python 3.8+ "walrus operator" for brevity. The
error will automatically be caught and translated to a returned-error
stack:
```python
>>> pprint.pprint([vars(r) for r in r_errs])
[{'raw_msg_': 'DEBUG: fail action encountered\n'
'line 14, col 15, rule base core\n'
' else { fail(); }\n'
' ^\n'
'\n',
'status_': -1220000}]
```
Note, if a stringized negative integer is given , i.e. as a special fail
code to be thrown within the rule, we must add this code into the `acceptable_errors`
parameter to have this automatically caught as well:
```python
>>> Rule( session, body='rule_that_fails_with_error_code("-2")',instance_name = 'irods_rule_engine_plugin-irods_rule_language-instance'
... ).execute( acceptable_errors = ( FAIL_ACTION_ENCOUNTERED_ERR, -2),
... r_error = (r_errs := irods.message.RErrorStack()) )
```
Because the rule is written to emit a custom error message via `failmsg()`,
the resulting r_error stack will now include that custom
error message as a substring:
```python
>>> pprint.pprint([vars(r) for r in r_errs])
[{'raw_msg_': 'DEBUG: -- my error message --\n'
'line 21, col 20, rule base core\n'
' if (*y < 0) { failmsg(*y,"-- my error message --"); } '
'#-> throws an error code of int(*x) in REPF\n'
' ^\n'
'\n',
'status_': -1220000}]
```
Alternatively, or in combination with the automatic catching of errors,
we may also catch errors as exceptions on the client side. For example,
if the Python rule engine is configured, and the following rule is
placed in `/etc/irods/core.py`:
```python
def python_rule(rule_args, callback, rei):
# if some operation fails():
raise RuntimeError
```
we can trap the error thus:
```python
try:
Rule( session, body = 'python_rule', instance_name = 'irods_rule_engine_plugin-python-instance' ).execute()
except irods.exception.RULE_ENGINE_ERROR:
print('Rule execution failed!')
exit(1)
print('Rule execution succeeded!')
```
As fail actions from native rules are not thrown by default (refer to
the help text for `Rule.execute`), if we anticipate these
and prefer to catch them as exceptions, we can do it this way:
```python
try:
Rule( session, body = 'python_rule', instance_name = 'irods_rule_engine_plugin-python-instance'
).execute( acceptable_errors = () )
except (irods.exception.RULE_ENGINE_ERROR,
irods.exception.FAIL_ACTION_ENCOUNTERED_ERR) as e:
print('Rule execution failed!')
exit(1)
print('Rule execution succeeded!')
```
Finally, keep in mind that rule code submitted through an
`irods.rule.Rule` object is processed by the
exec_rule_text function in the targeted plugin instance in the server.
This may be a
limitation for plugins not equipped to handle rule code in this way. In
a sort of middle-ground case, the iRODS Python Rule Engine Plugin is not
currently able to handle simple rule calls and the manipulation of iRODS
core primitives (like simple parameter passing and variable expansion')
as flexibly as the iRODS Rule Language.
Also, core.py rules may only be run directly by a rodsadmin, currently.
[See this issue for discussion](https://github.com/irods/irods_rule_engine_plugin_python/issues/105).
General Queries
---------------
```python
>>> import os
>>> from irods.session import iRODSSession
>>> from irods.models import Collection, DataObject
>>>
>>> env_file = os.path.expanduser('~/.irods/irods_environment.json')
>>> with iRODSSession(irods_env_file=env_file) as session:
... query = session.query(Collection.name, DataObject.id, DataObject.name, DataObject.size)
...
... for result in query:
... print('{}/{} id={} size={}'.format(result[Collection.name], result[DataObject.name], result[DataObject.id], result[DataObject.size]))
...
/tempZone/home/rods/manager/access_manager.py id=212665 size=2164
/tempZone/home/rods/manager/access_manager.pyc id=212668 size=2554
/tempZone/home/rods/manager/collection_manager.py id=212663 size=4472
/tempZone/home/rods/manager/collection_manager.pyc id=212664 size=4464
/tempZone/home/rods/manager/data_object_manager.py id=212662 size=10291
/tempZone/home/rods/manager/data_object_manager.pyc id=212667 size=8772
/tempZone/home/rods/manager/__init__.py id=212670 size=79
/tempZone/home/rods/manager/__init__.pyc id=212671 size=443
/tempZone/home/rods/manager/metadata_manager.py id=212660 size=4263
/tempZone/home/rods/manager/metadata_manager.pyc id=212659 size=4119
/tempZone/home/rods/manager/resource_manager.py id=212666 size=5329
/tempZone/home/rods/manager/resource_manager.pyc id=212661 size=4570
/tempZone/home/rods/manager/user_manager.py id=212669 size=5509
/tempZone/home/rods/manager/user_manager.pyc id=212658 size=5233
```
Query using other models:
```python
>>> from irods.column import Criterion
>>> from irods.models import DataObject, DataObjectMeta, Collection, CollectionMeta
>>> from irods.session import iRODSSession
>>> import os
>>> env_file = os.path.expanduser('~/.irods/irods_environment.json')
>>> with iRODSSession(irods_env_file=env_file) as session:
... # by metadata
... # equivalent to 'imeta qu -C type like Project'
... results = session.query(Collection, CollectionMeta).filter( \
... Criterion('=', CollectionMeta.name, 'type')).filter( \
... Criterion('like', CollectionMeta.value, '%Project%'))
... for r in results:
... print(r[Collection.name], r[CollectionMeta.name], r[CollectionMeta.value], r[CollectionMeta.units])
...
('/tempZone/home/rods', 'type', 'Project', None)
```
Since v0.8.3, the 'In()' operator is available:
```python
>>> from irods.models import Resource
>>> from irods.column import In
>>> [ resc[Resource.id]for resc in session.query(Resource).filter(In(Resource.name, ['thisResc','thatResc'])) ]
[10037,10038]
```
Query with aggregation(min, max, sum, avg, count):
```python
>>> with iRODSSession(irods_env_file=env_file) as session:
... query = session.query(DataObject.owner_name).count(DataObject.id).sum(DataObject.size)
... print(next(query.get_results()))
{<irods.column.Column 411 D_OWNER_NAME>: 'rods', <irods.column.Column 407 DATA_SIZE>: 62262, <irods.column.Column 401 D_DATA_ID>: 14}
```
In this case since we are expecting only one row we can directly call
`query.execute()`:
```python
>>> with iRODSSession(irods_env_file=env_file) as session:
... query = session.query(DataObject.owner_name).count(DataObject.id).sum(DataObject.size)
... print(query.execute())
+--------------+-----------+-----------+
| D_OWNER_NAME | D_DATA_ID | DATA_SIZE |
+--------------+-----------+-----------+
| rods | 14 | 62262 |
+--------------+-----------+-----------+
```
For a case-insensitive query, add a `case_sensitive=False`
parameter to the query:
```python
>>> with iRODSSession(irods_env_file=env_file) as session:
... query = session.query(DataObject.name, case_sensitive=False).filter(Like(DataObject.name, "%oBjEcT"))
... print(query.all())
+---------------------+
| DATA_NAME |
+---------------------+
| caseSENSITIVEobject |
+---------------------+
```
Specific Queries
----------------
```python
>>> import os
>>> from irods.session import iRODSSession
>>> from irods.models import Collection, DataObject
>>> from irods.query import SpecificQuery
>>>
>>> env_file = os.path.expanduser('~/.irods/irods_environment.json')
>>> with iRODSSession(irods_env_file=env_file) as session:
... # define our query
... sql = "select data_name, data_id from r_data_main join r_coll_main using (coll_id) where coll_name = '/tempZone/home/rods/manager'"
... alias = 'list_data_name_id'
... columns = [DataObject.name, DataObject.id] # optional, if we want to get results by key
... query = SpecificQuery(session, sql, alias, columns)
...
... # register specific query in iCAT
... _ = query.register()
...
... for result in query:
... print('{} {}'.format(result[DataObject.name], result[DataObject.id]))
...
... # delete specific query
... _ = query.remove()
...
user_manager.pyc 212658
metadata_manager.pyc 212659
metadata_manager.py 212660
resource_manager.pyc 212661
data_object_manager.py 212662
collection_manager.py 212663
collection_manager.pyc 212664
access_manager.py 212665
resource_manager.py 212666
data_object_manager.pyc 212667
access_manager.pyc 212668
user_manager.py 212669
__init__.py 212670
__init__.pyc 212671
```
Recherché Queries
-----------------
In some cases you might like to use a GenQuery operator not directly
offered by this Python library, or even combine query filters in ways
GenQuery may not directly support.
As an example, the code below finds metadata value fields
lexicographically outside the range of decimal integers, while also
requiring that the data objects to which they are attached do not reside
in the trash.
```python
>>> search_tuple = (DataObject.name , Collection.name ,
... DataObjectMeta.name , DataObjectMeta.value)
>>> # "not like" : direct instantiation of Criterion (operator in literal string)
>>> not_in_trash = Criterion ('not like', Collection.name , '%/trash/%')
>>> # "not between"( column, X, Y) := column < X OR column > Y ("OR" done via chained iterators)
>>> res1 = session.query (* search_tuple).filter(not_in_trash).filter(DataObjectMeta.value < '0')
>>> res2 = session.query (* search_tuple).filter(not_in_trash).filter(DataObjectMeta.value > '9' * 9999 )
>>> chained_results = itertools.chain ( res1.get_results(), res2.get_results() )
>>> pprint( list( chained_results ) )
```
Instantiating iRODS objects from query results
----------------------------------------------
The General query works well for getting information out of the ICAT if
all we're interested in is information representable with primitive
types (i.e. object names, paths, and ID's, as strings or integers). But
Python's object orientation also allows us to create object references
to mirror the persistent entities (instances of *Collection*,
*DataObject*, *User*, or *Resource*, etc.) inhabiting the ICAT.
**Background:**
Certain iRODS object types can be instantiated easily
using the session object's custom type managers, particularly if some
parameter (often just the name or path) of the object is already known:
```python
>>> type(session.users)
<class 'irods.manager.user_manager.UserManager'>
>>> u = session.users.get('rods')
>>> u.id
10003
```
Type managers are good for specific operations, including object
creation and removal:
```python
>>> session.collections.create('/tempZone/home/rods/subColln')
>>> session.collections.remove('/tempZone/home/rods/subColln')
>>> session.data_objects.create('/tempZone/home/rods/dataObj')
>>> session.data_objects.unlink('/tempZone/home/rods/dataObj')
```
When we retrieve a reference to an existing collection using *get* :
```python
>>> c = session.collections.get('/tempZone/home/rods')
>>> c
<iRODSCollection 10011 rods>
```
we have, in that variable *c*, a reference to an iRODS *Collection*
object whose properties provide useful information:
```python
>>> [ x for x in dir(c) if not x.startswith('__') ]
['_meta', 'data_objects', 'id', 'manager', 'metadata', 'move', 'name', 'path', 'remove', 'subcollections', 'unregister', 'walk']
>>> c.name
'rods'
>>> c.path
'/tempZone/home/rods'
>>> c.data_objects
[<iRODSDataObject 10019 test1>]
>>> c.metadata.items()
[ <... list of AVUs attached to Collection c ... > ]
```
or whose methods can do useful things:
```python
>>> for sub_coll in c.walk(): print('---'); pprint( sub_coll )
[ ...< series of Python data structures giving the complete tree structure below collection 'c'> ...]
```
This approach of finding objects by name, or via their relations with
other objects (ie "contained by", or in the case of metadata,
"attached to"), is helpful if we know something about the location or
identity of what we're searching for, but we don't always have that
kind of a-priori knowledge.
So, although we can (as seen in the last example) walk an
*iRODSCollection* recursively to discover all subordinate collections
and their data objects, this approach will not always be best for a
given type of application or data discovery, especially in more advanced
use cases.
**A Different Approach:**
For the PRC to be sufficiently powerful for general use, we'll often need at least:
- general queries, and
- the capabilities afforded by the PRC's object-relational mapping.
Suppose, for example, we wish to enumerate all collections in the iRODS
catalog.
Again, the object managers are the answer, but they are now invoked
using a different scheme:
```python
>>> from irods.collection import iRODSCollection; from irods.models import Collection
>>> all_collns = [ iRODSCollection(session.collections, result) for result in session.query(Collection) ]
```
From there, we have the ability to do useful work, or filtering based on
the results of the enumeration. And, because *all_collns* is an
iterable of true objects, we can either use Python's list
comprehensions or execute more catalog queries to achieve further aims.
Note that, for similar system-wide queries of Data Objects (which, as it
happens, are inextricably joined to their parent Collection objects), a
bit more finesse is required. Let us query, for example, to find all
data objects in a particular zone with an AVU that matches the following
condition:
```
META_DATA_ATTR_NAME = "irods::alert_time" and META_DATA_ATTR_VALUE like '+0%'
```
```python
>>> import irods.keywords
>>> from irods.data_object import iRODSDataObject
>>> from irods.models import DataObjectMeta, DataObject
>>> from irods.column import Like
>>> q = session.query(DataObject).filter( DataObjectMeta.name == 'irods::alert_time',
Like(DataObjectMeta.value, '+0%') )
>>> zone_hint = "" # --> add a zone name in quotes to search another zone
>>> if zone_hint: q = q.add_keyword( irods.keywords.ZONE_KW, zone_hint )
>>> for res in q:
... colln_id = res [DataObject.collection_id]
... collObject = get_collection( colln_id, session, zone = zone_hint)
... dataObject = iRODSDataObject( session.data_objects, parent = collObject, results=[res])
... print( '{coll}/{data}'.format (coll = collObject.path, data = dataObject.name))
```
In the above loop we have used a helper function, *get_collection*, to
minimize the number of hits to the object catalog. Otherwise, me might
find within a typical application that some Collection objects are being
queried at a high rate of redundancy. *get_collection* can be
implemented thusly:
```python
import collections # of the Pythonic, not iRODS, kind
def makehash():
# see https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python
return collections.defaultdict(makehash)
from irods.collection import iRODSCollection
from irods.models import Collection
def get_collection (Id, session, zone=None, memo = makehash()):
if not zone: zone = ""
c_obj = memo[session][zone].get(Id)
if c_obj is None:
q = session.query(Collection).filter(Collection.id==Id)
if zone != '': q = q.add_keyword( irods.keywords.ZONE_KW, zone )
c_id = q.one()
c_obj = iRODSCollection(session, result = c_id)
memo[session][zone][Id] = c_obj
return c_obj
```
Once instantiated, of course, any *iRODSDataObject*'s data to which we
have access permissions is available via its open() method.
As stated, this type of object discovery requires some extra study and
effort, but the ability to search arbitrary iRODS zones (to which we are
federated and have the user permissions) is powerful indeed.
GenQuery2 Queries
-----------------
GenQuery2 is a successor to the regular GenQuery interface. It is available
by default on iRODS 4.3.2 and higher. GenQuery2 currently has an experimental status,
and is subject to change.
Queries can be executed using the `genquery2` function and passing a single querystring. All parsing is done on the server.
For example:
```
>>> session.genquery2("SELECT COLL_NAME WHERE COLL_NAME = '/tempZone/home' OR COLL_NAME LIKE '%/genquery2_dummy_doesnotexist'")
[['/tempZone/home']]
```
Alternatively, create a GenQuery2 object and use it to execute queries. For example:
```
>>> q = session.genquery2_object()
>>> q.execute("SELECT COLL_NAME WHERE COLL_NAME = '/tempZone/home' OR COLL_NAME LIKE '%/genquery2_dummy_doesnotexist'", zone="tempZone")
[['/tempZone/home']]
```
GenQuery2 objects also support retrieving only the SQL generated by a GenQuery2 query using the
`get_sql` function and retrieving all available column mappings using the `get_column_mappings` function.
Tickets
-------
The `irods.ticket.Ticket` class lets us issue "tickets"
which grant limited permissions for other users to access our own data
objects (or collections of data objects). As with the iticket client,
the access may be either "read" or "write". The recipient of the
ticket could be a rodsuser, or even an anonymous user.
Below is a demonstration of how to generate a new ticket for access to a
logical path - in this case, say a collection containing 1 or more data
objects. (We assume the creation of the granting_session and
receiving_session for the users respectively for the users providing
and consuming the ticket access.)
The user who wishes to provide an access may execute the following:
```python
>>> from irods.ticket import Ticket
>>> new_ticket = Ticket (granting_session)
>>> The_Ticket_String = new_ticket.issue('read',
... '/zone/home/my/collection_with_data_objects_for/somebody').string
```
at which point that ticket's unique string may be given to other users,
who can then apply the ticket to any existing session object in order to
gain access to the intended object(s):
```python
>>> from irods.models import Collection, DataObject
>>> ses = receiving_session
>>> Ticket(ses, The_Ticket_String).supply()
>>> c_result = ses.query(Collection).one()
>>> c = iRODSCollection( ses.collections, c_result)
>>> for dobj in (c.data_objects):
... ses.data_objects.get( dobj.path, '/tmp/' + dobj.name ) # download objects
```
In this case, however, modification will not be allowed because the
ticket is for read only:
```python
>>> c.data_objects[0].open('w').write( # raises
... b'new content') # CAT_NO_ACCESS_PERMISSION
```
In another example, we could generate a ticket that explicitly allows
'write' access on a specific data object, thus granting other users
the permissions to modify as well as read it:
```python
>>> ses = iRODSSession( user = 'anonymous', password = '', host = 'localhost',
port = 1247, zone = 'tempZone')
>>> Ticket(ses, write_data_ticket_string ).supply()
>>> d_result = ses.query(DataObject.name,Collection.name).one()
>>> d_path = ( d_result[Collection.name] + '/' +
... d_result[DataObject.name] )
>>> old_content = ses.data_objects.open(d_path,'r').read()
>>> with tempfile.NamedTemporaryFile() as f:
... f.write(b'blah'); f.flush()
... ses.data_objects.put(f.name,d_path)
```
As with iticket, we may set a time limit on the availability of a
ticket, either as a timestamp or in seconds since the epoch:
```python
>>> t=Ticket(ses); s = t.string
vIOQ6qzrWWPO9X7
>>> t.issue('read','/some/path')
>>> t.modify('expire','2021-04-01.12:34:56') # timestamp assumed as UTC
```
To check the results of the above, we could invoke this icommand
elsewhere in a shell prompt:
```
iticket ls vIOQ6qzrWWPO9X7
```
and the server should report back the same expiration timestamp.
And, if we are the issuer of a ticket, we may also query, filter on, and
extract information based on a ticket's attributes and catalog
relations:
```python
>>> from irods.models import TicketQuery
>>> delay = lambda secs: int( time.time() + secs + 1)
>>> Ticket(ses).issue('read','/path/to/data_object').modify(
'expire',delay(7*24*3600)) # lasts 1 week
>>> Q = ses.query (TicketQuery.Ticket, TicketQuery.DataObject).filter(
... TicketQuery.DataObject.name == 'data_object')
>>> print ([ _[TicketQuery.Ticket.expiry_ts] for _ in Q ])
['1636757427']
```
Tracking and manipulating replicas of Data Objects
--------------------------------------------------
Putting together the techniques we've seen so far, it's not hard to write client code to accomplish
useful, common tasks. Suppose, for instance, that a data object contains replicas on a given resource
or resource hierarchy (the "source"), and we want those replicas "moved" to a second resource
(the "destination"). This can be done by combining the replicate and trim operations, as in the following
code excerpt.
We'll assume, for our current purposes, that all pre-existing replicas are good (ie. they have a
`status` attribute of `'1'`); and that the nodes in question are named `src` and `dest`,
with `src` being the root node of a resource hierarchy and `dest` just a simple storage node.
Then we can accomplish the replica "move" thus:
```python
path = '/path/to/data/object'
data = session.data_objects.get('/path/to/data/object')
# Replicate the data object to the destination.
data.replicate(**{kw.DEST_RESC_NAME_KW: 'dest'})
# Find and trim replicas on the source resource hierarchy.
replica_numbers = [r.number for r in d.replicas if r.resc_hier.startswith('src;')]
for number in replica_numbers:
session.data_objects.trim(path, **{kw.DATA_REPL_NUM:number, kw.COPIES_KW:1})
```
Users and Groups
----------------
iRODS tracks users and groups using two tables, R_USER_MAIN and
R_USER_GROUP. Under this database schema, all groups are also users:
```python
>>> from irods.models import User, Group
>>> from pprint import pprint
>>> pprint(list((x[User.id], x[User.name]) for x in session.query(User)))
[(10048, 'alice'),
(10001, 'rodsadmin'),
(13187, 'bobby'),
(10045, 'collab'),
(10003, 'rods'),
(13193, 'empty'),
(10002, 'public')]
```
But it's also worth noting that the User.type field will be
'rodsgroup' for any user ID that iRODS internally recognizes as a
"Group":
```python
>>> groups = session.query(User).filter( User.type == 'rodsgroup' )
>>> [x[User.name] for x in groups]
['collab', 'public', 'rodsadmin', 'empty']
```
Since we can instantiate iRODSGroup and iRODSUser objects directly from
the rows of a general query on the corresponding tables, it is also
straightforward to trace out the groups' memberships:
```python
>>> from irods.user import iRODSUser, iRODSGroup
>>> grp_usr_mapping = [ (iRODSGroup(session.groups, result), iRODSUser(session.users, result)) \
... for result in session.query(Group,User) ]
>>> pprint( [ (x,y) for x,y in grp_usr_mapping if x.id != y.id ] )
[(<iRODSGroup 10045 collab>, <iRODSUser 10048 alice rodsuser tempZone>),
(<iRODSGroup 10001 rodsadmin>, <iRODSUser 10003 rods rodsadmin tempZone>),
(<iRODSGroup 10002 public>, <iRODSUser 10003 rods rodsadmin tempZone>),
(<iRODSGroup 10002 public>, <iRODSUser 10048 alice rodsuser tempZone>),
(<iRODSGroup 10045 collab>, <iRODSUser 13187 bobby rodsuser tempZone>),
(<iRODSGroup 10002 public>, <iRODSUser 13187 bobby rodsuser tempZone>)]
```
(Note that in general queries, fields cannot be compared to each other,
only to literal constants; thus the '!=' comparison in the Python list
comprehension.)
From the above, we can see that the group 'collab' (with user ID
10045) contains users 'bobby'(13187) and 'alice'(10048) but not
'rods'(10003), as the tuple (10045,10003) is not listed. Group
'rodsadmin'(10001) contains user 'rods'(10003) but no other users;
and group 'public'(10002) by default contains all canonical users
(those whose User.type is 'rodsadmin' or 'rodsuser'). The empty
group ('empty') has no users as members, so it doesn't show up in our
final list.
Group Administrator Capabilities
--------------------------------
Since v1.1.7, group administrator functions are available.
A groupadmin may invoke methods to create groups, and may add
users to, or remove them from, any group to which they themselves
belong:
```python
>>> session.groups.create('lab')
>>> session.groups.addmember('lab',session.username) # allow self to administer group
>>> session.groups.addmember('lab','otheruser')
>>> session.groups.removemember('lab','otheruser')
```
A groupadmin may also create accounts for new users and
enable their logins by initializing a native password for them:
```python
>>> session.users.create_with_password('alice', 'change_me')
```
iRODS Permissions (ACLs)
------------------------
The `iRODSAccess` class offers a convenient dictionary
interface mapping iRODS permission strings to the corresponding integer
codes:
```python
>>> from irods.access import iRODSAccess
>>> iRODSAccess.keys()
['null', 'read_metadata', 'read_object', 'create_metadata', 'modify_metadata', 'delete_metadata', 'create_object', 'modify_object', 'delete_object', 'own']
>>> WRITE = iRODSAccess.to_int('modify_object')
```
Armed with that, we can then query on all data objects with ACLs that
allow our user to write them:
```python
>>> from irods.models import (DataObject, User, DataAccess)
>>> data_objects_writable = list(session.query(DataObject, User, DataAccess).filter(User.name == session.username, DataAccess.type >= WRITE))
```
Finally, we can also access the list of permissions available through a
given session object via the `available_permissions`
property. Note that (in keeping with changes in iRODS 4.3+)
the permissions list will be longer, as appropriate, for session objects
connected to the more recent servers; and also that the embedded spaces
in some 4.2 permission strings are replaced by underscores in 4.3
and later.
```python
>>> session.server_version
(4, 2, 11)
>>> session.available_permissions.items()
[('null', 1000), ('read object', 1050), ('modify object', 1120), ('own', 1200)]
```
Getting and setting permissions
-------------------------------
We can find the ID's of all the collections writable (i.e. having
a "modify" ACL) by, but not owned by, alice (or even alice\#otherZone):
```python
>>> from irods.models import Collection,CollectionAccess,CollectionUser,User
>>> from irods.column import Like
>>> q = session.query (Collection,CollectionAccess).filter(
... CollectionUser.name == 'alice', # User.zone == 'otherZone', # zone optional
... Like(CollectionAccess.name, 'modify%') ) #defaults to current zone
```
If we then want to downgrade those permissions to read-only, we can do
the following:
```python
>>> from irods.access import iRODSAccess
>>> for c in q:
... session.acls.set( iRODSAccess('read', c[Collection.name], 'alice', # 'otherZone' # zone optional
... ))
```
A call to `session.acls.get(c)` -- with `c`
being the result of
`sessions.collections.get(c[Collection.name])` -- would
then verify the desired change had taken place (as well as list all ACLs
stored in the catalog for that collection).
The older access manager,
`<session>.permissions`, produced inconsistent results when
the `get()` method was invoked with the parameter
`report_raw_acls` set (or defaulting) to
`False`. Specifically, collections would exhibit the
"non-raw-ACL" behavior of reporting individual member users'
permissions as a by-product of group ACLs, whereas data objects would
not.
Since v1.1.6, this inconsistency is corrected by
`<session>.acls` which acts almost identically
to `<session>.permissions`, except that the
`<session>.acls.get(...)` method does not accept the
`report_raw_acls` parameter. When we need to detect users'
permissions independent of their access to an object via group
membership, this can be achieved with another query.
`<session>.permissions` was therefore removed in v2.0.0
in favor of `<session>.acls`.
Quotas (v2.0.0)
---------------
Quotas may be set for a group:
```python
session.groups.set_quota('my_group', 50000, resource = 'my_limited_resource')
```
or per user, prior to iRODS 4.3.0:
```python
session.users.set_quota('alice', 100000)
```
The default for the resource parameter is "total", denoting a general
quota usage not bound to a particular resource.
The Quota model is also available for queries. So, to determine the
space remaining for a certain group on a given resource:
```python
from irods.models import Quota
session.groups.calculate_usage()
group, resource = ['my_group', 'my_limited_resource']
space_left_in_bytes = list(session.query(Quota.over).filter(Quota.user_id == session.groups.get(group).id,
Quota.resc_id == session.resources.get(resource).id))[0][Quota.over] * -1
```
And, to remove all quotas for a given group, one might (as a rodsadmin)
do the following:
```python
from irods.models import Resource, Quota
resc_map = dict([(x[Resource.id],x[Resource.name]) for x in sess.query(Resource)] + [(0,'total')])
group = sess.groups.get('my_group')
for quota in sess.query(Quota).filter(Quota.user_id == group.id):
sess.groups.remove_quota(group.name, resource = resc_map[quota.resc_id])
```
Managing users
--------------
You can create a user in the current zone (with an optional auth_str):
```python
>>> session.users.create('user', 'rodsuser', 'MyZone', auth_str)
```
If you want to create a user from a federated zone, use:
```python
>>> session.users.create('user', 'rodsuser', 'OtherZone', auth_str)
```
Showing client hints
--------------------
You can get a list of available microservices, rules, etc. using the `client_hints`
attribute of the session.
```python
>>> session.client_hints
```
Code Samples and Tests
----------------------
Additional code samples are available in the [test
directory](https://github.com/irods/python-irodsclient/tree/main/irods/test)
Testing
=======
Setting up and running tests
----------------------------
The Python iRODS Client comes with its own suite of tests. Some amount
of setting up may be necessary first:
1. Use `iinit` to specify the iRODS client environment.
For best results, point the client at a server running on the local
host.
2. Install the python-irodsclient along with the
`unittest unittest_xml_reporting` module or the older
`xmlrunner` equivalent.
- `pip install ./path-to-python-irodsclient-repo[tests]`
(when using a local Git repo); or,
- `pip install python-irodsclient[tests]'>=1.1.1'`
(when installing directly from PyPI).
3. Follow further instructions in the [test
README file](https://github.com/irods/python-irodsclient/tree/main/irods/test/README.rst)
Testing S3 parallel transfer
----------------------------
System requirements:
- Ubuntu 18 user with Docker installed.
- Local instance of iRODS server running.
- Logged in sudo privileges.
Run a MinIO service:
```
$ docker run -d -p 9000:9000 -p 9001:9001 minio/minio server /data --console-address ":9001"
```
Set up a bucket `s3://irods` under MinIO:
```
$ pip install awscli
$ aws configure
AWS Access Key ID [None]: minioadmin
AWS Secret Access Key [None]: minioadmin
Default region name [None]:
Default output format [None]:
$ aws --endpoint-url http://127.0.0.1:9000 s3 mb s3://irods
```
Set up s3 credentials for the iRODS s3 storage resource:
```
$ sudo su - irods -c "/bin/echo -e 'minioadmin\nminioadmin' >/var/lib/irods/s3-credentials"
$ sudo chown 600 /var/lib/irods/s3-credentials
```
Create the s3 storage resource:
```
$ sudo apt install irods-resource-plugin-s3
```
As the 'irods' service account user:
```
$ iadmin mkresc s3resc s3 $(hostname):/irods/ \
"S3_DEFAULT_HOSTNAME=localhost:9000;"\
"S3_AUTH_FILE=/var/lib/irods/s3-credentials;"\
"S3_REGIONNAME=us-east-1;"\
"S3_RETRY_COUNT=1;"\
"S3_WAIT_TIME_SEC=3;"\
"S3_PROTO=HTTP;"\
"ARCHIVE_NAMING_POLICY=consistent;"\
"HOST_MODE=cacheless_attached"
$ dd if=/dev/urandom of=largefile count=40k bs=1k # create 40-megabyte test file
$ pip install 'python-irodsclient>=1.1.2'
$ python -c"from irods.test.helpers import make_session
import irods.keywords as kw
with make_session() as sess:
sess.data_objects.put( 'largefile',
'/tempZone/home/rods/largeFile1',
**{kw.DEST_RESC_NAME_KW:'s3resc'} )
sess.data_objects.get( '/tempZone/home/rods/largeFile1',
'/tmp/largefile')
```
|