File: README.md

package info (click to toggle)
python-itemadapter 0.12.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 304 kB
  • sloc: python: 3,381; makefile: 4
file content (666 lines) | stat: -rw-r--r-- 21,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# itemadapter
[![version](https://img.shields.io/pypi/v/itemadapter.svg)](https://pypi.python.org/pypi/itemadapter)
[![pyversions](https://img.shields.io/pypi/pyversions/itemadapter.svg)](https://pypi.python.org/pypi/itemadapter)
[![actions](https://github.com/scrapy/itemadapter/workflows/Tests/badge.svg)](https://github.com/scrapy/itemadapter/actions)
[![codecov](https://codecov.io/gh/scrapy/itemadapter/branch/master/graph/badge.svg)](https://codecov.io/gh/scrapy/itemadapter)


The `ItemAdapter` class is a wrapper for data container objects, providing a
common interface to handle objects of different types in an uniform manner,
regardless of their underlying implementation.

Currently supported types are:

* [`scrapy.item.Item`](https://docs.scrapy.org/en/latest/topics/items.html#scrapy.item.Item)
* [`dict`](https://docs.python.org/3/library/stdtypes.html#dict)
* [`dataclass`](https://docs.python.org/3/library/dataclasses.html)-based classes
* [`attrs`](https://www.attrs.org)-based classes
* [`pydantic`](https://pydantic-docs.helpmanual.io/)-based classes

Additionally, interaction with arbitrary types is supported, by implementing
a pre-defined interface (see [extending `itemadapter`](#extending-itemadapter)).

---

## Requirements

* Python 3.9+, either the CPython implementation (default) or the PyPy
  implementation
* [`scrapy`](https://scrapy.org/) 2.2+: optional, needed to interact with
  `scrapy` items
* [`attrs`](https://pypi.org/project/attrs/) 20.1.0+: optional, needed to
  interact with `attrs`-based items
* [`pydantic`](https://pypi.org/project/pydantic/) 1.8+: optional, needed to
  interact with `pydantic`-based items

---

## Installation

`itemadapter` is available on [`PyPI`](https://pypi.python.org/pypi/itemadapter), it can be installed with `pip`:

```
pip install itemadapter
```

For `attrs`, `pydantic` and `scrapy` support, install the corresponding extra
to ensure that a supported version of the corresponding dependencies is
installed. For example:

```
pip install itemadapter[scrapy]
```

Mind that you can install multiple extras as needed. For example:

```
pip install itemadapter[attrs,pydantic,scrapy]
```

---

## License

`itemadapter` is distributed under a [BSD-3](https://opensource.org/licenses/BSD-3-Clause) license.

---

## Basic usage

The following is a simple example using a `dataclass` object.
Consider the following type definition:

```python
>>> from dataclasses import dataclass
>>> from itemadapter import ItemAdapter
>>> @dataclass
... class InventoryItem:
...     name: str
...     price: float
...     stock: int
>>>
```

An `ItemAdapter` object can be treated much like a dictionary:

```python
>>> obj = InventoryItem(name='foo', price=20.5, stock=10)
>>> ItemAdapter.is_item(obj)
True
>>> adapter = ItemAdapter(obj)
>>> len(adapter)
3
>>> adapter["name"]
'foo'
>>> adapter.get("price")
20.5
>>>
```

The wrapped object is modified in-place:
```python
>>> adapter["name"] = "bar"
>>> adapter.update({"price": 12.7, "stock": 9})
>>> adapter.item
InventoryItem(name='bar', price=12.7, stock=9)
>>> adapter.item is obj
True
>>>
```

### Converting to dict

The `ItemAdapter` class provides the `asdict` method, which converts
nested items recursively. Consider the following example:

```python
>>> from dataclasses import dataclass
>>> from itemadapter import ItemAdapter
>>> @dataclass
... class Price:
...     value: int
...     currency: str
>>> @dataclass
... class Product:
...     name: str
...     price: Price
>>>
```

```python
>>> item = Product("Stuff", Price(42, "UYU"))
>>> adapter = ItemAdapter(item)
>>> adapter.asdict()
{'name': 'Stuff', 'price': {'value': 42, 'currency': 'UYU'}}
>>>
```

Note that just passing an adapter object to the `dict` built-in also works,
but it doesn't traverse the object recursively converting nested items:

```python
>>> dict(adapter)
{'name': 'Stuff', 'price': Price(value=42, currency='UYU')}
>>>
```

---

## API reference

### Built-in adapters

The following adapters are included by default:

* `itemadapter.adapter.ScrapyItemAdapter`: handles `Scrapy` items
* `itemadapter.adapter.DictAdapter`: handles `Python` dictionaries
* `itemadapter.adapter.DataclassAdapter`: handles `dataclass` objects
* `itemadapter.adapter.AttrsAdapter`: handles `attrs` objects
* `itemadapter.adapter.PydanticAdapter`: handles `pydantic` objects

### class `itemadapter.adapter.ItemAdapter(item: Any)`

This is the main entrypoint for the package. Tipically, user code
wraps an item using this class, and proceeds to handle it with the provided interface.
`ItemAdapter` implements the
[`MutableMapping`](https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping)
interface, providing a `dict`-like API to manipulate data for the object it wraps
(which is modified in-place).

**Attributes**

#### class attribute `ADAPTER_CLASSES: Iterable`

Stores the currently registered adapter classes.

The order in which the adapters are registered is important. When an `ItemAdapter` object is
created for a specific item, the registered adapters are traversed in order and the first
adapter class to return `True` for the `is_item` class method is used for all subsequent
operations. The default order is the one defined in the
[built-in adapters](#built-in-adapters) section.

The default implementation uses a
[`collections.deque`](https://docs.python.org/3/library/collections.html#collections.deque)
to support efficient addition/deletion of adapters classes to both ends, but if you are
deriving a subclass (see the section on [extending itemadapter](#extending-itemadapter)
for additional information), any other iterable (e.g. `list`, `tuple`) will work.

**Methods**

#### class method `is_item(item: Any) -> bool`

Return `True` if any of the registed adapters can handle the item
(i.e. if any of them returns `True` for its `is_item` method with
`item` as argument), `False` otherwise.

#### class method `is_item_class(item_class: type) -> bool`

Return `True` if any of the registered adapters can handle the item class
(i.e. if any of them returns `True` for its `is_item_class` method with
`item_class` as argument), `False` otherwise.

#### class method `get_field_meta_from_class(item_class: type, field_name: str) -> MappingProxyType`

Return a [`types.MappingProxyType`](https://docs.python.org/3/library/types.html#types.MappingProxyType)
object, which is a read-only mapping with metadata about the given field. If the item class does not
support field metadata, or there is no metadata for the given field, an empty object is returned.

The returned value is taken from the following sources, depending on the item type:

  * [`scrapy.item.Field`](https://docs.scrapy.org/en/latest/topics/items.html#item-fields)
    for `scrapy.item.Item`s
  * [`dataclasses.field.metadata`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field)
    for `dataclass`-based items
  * [`attr.Attribute.metadata`](https://www.attrs.org/en/stable/examples.html#metadata)
    for `attrs`-based items
  * [`pydantic.fields.FieldInfo`](https://pydantic-docs.helpmanual.io/usage/schema/#field-customisation)
    for `pydantic`-based items

#### class method `get_field_names_from_class(item_class: type) -> Optional[list[str]]`

Return a list with the names of all the fields defined for the item class.
If an item class doesn't support defining fields upfront, None is returned.

#### class method `get_json_schema(item_class: type) -> dict[str, Any]`

Return a dict with a [JSON Schema](https://json-schema.org/) representation of
the item class.

The generated JSON Schema reflects field type hints, attribute docstrings and
class and field metadata of any supported item class. It also supports using
item classes in field types of other item classes.

For example, given:

```python
from dataclasses import dataclass

import attrs


@dataclass
class Brand:
    name: str

@attrs.define
class Product:
    name: str
    """Product name"""

    brand: Brand | None
    in_stock: bool = True
```

`ItemAdapter.get_json_schema(Product)` returns:

```python
{
    "type": "object",
    "additionalProperties": False,
    "properties": {
        "name": {"type": "string", "description": "Product name"},
        "brand": {
            "anyOf": [
                {"type": "null"},
                {
                    "type": "object",
                    "additionalProperties": False,
                    "properties": {"name": {"type": "string"}},
                    "required": ["name"],
                },
            ]
        },
        "in_stock": {"default": True, "type": "boolean"},
    },
    "required": ["name", "brand"],
}
```

You can also extend or override JSON Schema data at the item class or field
level:

-   Set `json_schema_extra` in field metadata to extend or override the JSON
    Schema data for that field. For example:

    ```python
    >>> from scrapy.item import Item, Field
    >>> from itemadapter import ItemAdapter
    >>> class MyItem(Item):
    ...     name: str = Field(json_schema_extra={"minLength": 1})
    ...
    >>> ItemAdapter.get_json_schema(MyItem)
    {'type': 'object', 'additionalProperties': False, 'properties': {'name': {'minLength': 1, 'type': 'string'}}, 'required': ['name']}

    ```

-   Define a `__json_schema_extra__` class attribute dict to extend or override
    JSON Schema data for the entire class. For example:

    ```python
    >>> from dataclasses import dataclass
    >>> from itemadapter import ItemAdapter
    >>> @dataclass
    ... class MyItem:
    ...     __json_schema_extra__ = {"additionalProperties": True}
    ...     name: str
    ...
    >>> ItemAdapter.get_json_schema(MyItem)
    {'additionalProperties': True, 'type': 'object', 'properties': {'name': {'type': 'string'}}, 'required': ['name']}

    ```

Note that, for Pydantic items, itemadapter does not use
[`model_json_schema()`](https://docs.pydantic.dev/latest/api/base_model/#pydantic.BaseModel.model_json_schema)
and instead uses its own implementation. That way, the output JSON Schema is
consistent across different item types. It also makes it possible to generate
JSON Schemas for Pydantic models that have nested non-Pydantic item classes as
fields. The downside is that JSON Schema support in itemadapter may not be as
advanced as Pydantic‘s.

The following are some known limitations of JSON Schema generation in
itemadapter:

-   Attribute docstrings are read with
    [`inspect.getsource()`](https://docs.python.org/3/library/inspect.html#inspect.getsource),
    and may not be readable at run time in some cases. For such cases, define
    `description` within `json_schema_extra` instead (see below).

-   String pattern contraints are silently ignored if they are not compatible
    with JSON Schema. No effort is made to make them compatible.

-   Recursion is silently ignored: if you have an item class that has an
    attribute with that same item class as a type or as part of its type, a
    simple `{"type": "object"}` is used to map the nested instances of that
    item class.

#### `get_field_meta(field_name: str) -> MappingProxyType`

Return metadata for the given field, if available. Unless overriden in a custom adapter class, by default
this method calls the adapter's `get_field_meta_from_class` method, passing the wrapped item's class.

#### `field_names() -> collections.abc.KeysView`

Return a [keys view](https://docs.python.org/3/library/collections.abc.html#collections.abc.KeysView)
with the names of all the defined fields for the item.

#### `asdict() -> dict`

Return a `dict` object with the contents of the adapter. This works slightly different than
calling `dict(adapter)`, because it's applied recursively to nested items (if there are any).


### function `itemadapter.utils.is_item(obj: Any) -> bool`

Return `True` if the given object belongs to (at least) one of the supported types,
`False` otherwise. This is an alias, using the `itemadapter.adapter.ItemAdapter.is_item`
class method is encouraged for better performance.


### function `itemadapter.utils.get_field_meta_from_class(item_class: type, field_name: str) -> types.MappingProxyType`

Alias for `itemadapter.adapter.ItemAdapter.get_field_meta_from_class`

---

## Metadata support

`scrapy.item.Item`, `dataclass`, `attrs`, and `pydantic` objects allow the definition of
arbitrary field metadata. This can be accessed through a
[`MappingProxyType`](https://docs.python.org/3/library/types.html#types.MappingProxyType)
object, which can be retrieved from an item instance with
`itemadapter.adapter.ItemAdapter.get_field_meta`, or from an item class
with the `itemadapter.adapter.ItemAdapter.get_field_meta_from_class`
method (or its alias `itemadapter.utils.get_field_meta_from_class`).
The source of the data depends on the underlying type (see the docs for
`ItemAdapter.get_field_meta_from_class`).

#### `scrapy.item.Item` objects

```python
>>> from scrapy.item import Item, Field
>>> from itemadapter import ItemAdapter
>>> class InventoryItem(Item):
...     name = Field(serializer=str)
...     value = Field(serializer=int, limit=100)
...
>>> adapter = ItemAdapter(InventoryItem(name="foo", value=10))
>>> adapter.get_field_meta("name")
mappingproxy({'serializer': <class 'str'>})
>>> adapter.get_field_meta("value")
mappingproxy({'serializer': <class 'int'>, 'limit': 100})
>>>
```

#### `dataclass` objects

```python
>>> from dataclasses import dataclass, field
>>> @dataclass
... class InventoryItem:
...     name: str = field(metadata={"serializer": str})
...     value: int = field(metadata={"serializer": int, "limit": 100})
...
>>> adapter = ItemAdapter(InventoryItem(name="foo", value=10))
>>> adapter.get_field_meta("name")
mappingproxy({'serializer': <class 'str'>})
>>> adapter.get_field_meta("value")
mappingproxy({'serializer': <class 'int'>, 'limit': 100})
>>>
```

#### `attrs` objects

```python
>>> import attr
>>> @attr.s
... class InventoryItem:
...     name = attr.ib(metadata={"serializer": str})
...     value = attr.ib(metadata={"serializer": int, "limit": 100})
...
>>> adapter = ItemAdapter(InventoryItem(name="foo", value=10))
>>> adapter.get_field_meta("name")
mappingproxy({'serializer': <class 'str'>})
>>> adapter.get_field_meta("value")
mappingproxy({'serializer': <class 'int'>, 'limit': 100})
>>>
```

#### `pydantic` objects

```python
>>> from pydantic import BaseModel, Field
>>> class InventoryItem(BaseModel):
...     name: str = Field(json_schema_extra={"serializer": str})
...     value: int = Field(json_schema_extra={"serializer": int, "limit": 100})
...
>>> adapter = ItemAdapter(InventoryItem(name="foo", value=10))
>>> adapter.get_field_meta("name")
mappingproxy({'annotation': <class 'str'>, 'json_schema_extra': {'serializer': <class 'str'>}, 'repr': True})
>>> adapter.get_field_meta("value")
mappingproxy({'annotation': <class 'int'>, 'json_schema_extra': {'serializer': <class 'int'>, 'limit': 100}, 'repr': True})
>>>
```

---

## Extending `itemadapter`

This package allows to handle arbitrary item classes, by implementing an adapter interface:

_class `itemadapter.adapter.AdapterInterface(item: Any)`_

Abstract Base Class for adapters. An adapter that handles a specific type of item must
inherit from this class and implement the abstract methods defined on it. `AdapterInterface`
inherits from [`collections.abc.MutableMapping`](https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping),
so all methods from the `MutableMapping` interface must be implemented as well.

* _class method `is_item_class(cls, item_class: type) -> bool`_

    Return `True` if the adapter can handle the given item class, `False` otherwise. Abstract (mandatory).

* _class method `is_item(cls, item: Any) -> bool`_

    Return `True` if the adapter can handle the given item, `False` otherwise.
    The default implementation calls `cls.is_item_class(item.__class__)`.

* _class method `get_field_meta_from_class(cls, item_class: type) -> bool`_

    Return metadata for the given item class and field name, if available.
    By default, this method returns an empty `MappingProxyType` object. Please supply your
    own method definition if you want to handle field metadata based on custom logic.
    See the [section on metadata support](#metadata-support) for additional information.

* _method `get_field_meta(self, field_name: str) -> types.MappingProxyType`_

    Return metadata for the given field name, if available. It's usually not necessary to
    override this method, since the `itemadapter.adapter.AdapterInterface` base class
    provides a default implementation that calls `ItemAdapter.get_field_meta_from_class`
    with the wrapped item's class as argument.
    See the [section on metadata support](#metadata-support) for additional information.

* _method `field_names(self) -> collections.abc.KeysView`_:

    Return a [dynamic view](https://docs.python.org/3/library/collections.abc.html#collections.abc.KeysView)
    of the item's field names. By default, this method returns the result of calling `keys()` on
    the current adapter, i.e., its return value depends on the implementation of the methods from the
    `MutableMapping` interface (more specifically, it depends on the return value of `__iter__`).

    You might want to override this method if you want a way to get all fields for an item, whether or not
    they are populated. For instance, Scrapy uses this method to define column names when exporting items to CSV.

### Registering an adapter

Add your custom adapter class to the
`itemadapter.adapter.ItemAdapter.ADAPTER_CLASSES` class attribute in order to
handle custom item classes.

**Example**
```
pip install zyte-common-items
```
```python
>>> from itemadapter.adapter import ItemAdapter
>>> from zyte_common_items import Item, ZyteItemAdapter
>>>
>>> ItemAdapter.ADAPTER_CLASSES.appendleft(ZyteItemAdapter)
>>> item = Item()
>>> adapter = ItemAdapter(item)
>>> adapter
<ItemAdapter for Item()>
>>>
```

### Multiple adapter classes

If you need to have different handlers and/or priorities for different cases
you can subclass the `ItemAdapter` class and set the `ADAPTER_CLASSES`
attribute as needed:


**Example**
```python
>>> from itemadapter.adapter import (
...     ItemAdapter,
...     AttrsAdapter,
...     DataclassAdapter,
...     DictAdapter,
...     PydanticAdapter,
...     ScrapyItemAdapter,
... )
>>> from scrapy.item import Item, Field
>>>
>>> class BuiltinTypesItemAdapter(ItemAdapter):
...     ADAPTER_CLASSES = [DictAdapter, DataclassAdapter]
...
>>> class ThirdPartyTypesItemAdapter(ItemAdapter):
...     ADAPTER_CLASSES = [AttrsAdapter, PydanticAdapter, ScrapyItemAdapter]
...
>>> class ScrapyItem(Item):
...     foo = Field()
...
>>> BuiltinTypesItemAdapter.is_item(dict())
True
>>> ThirdPartyTypesItemAdapter.is_item(dict())
False
>>> BuiltinTypesItemAdapter.is_item(ScrapyItem(foo="bar"))
False
>>> ThirdPartyTypesItemAdapter.is_item(ScrapyItem(foo="bar"))
True
>>>
```

---

## More examples

### `scrapy.item.Item` objects

```python
>>> from scrapy.item import Item, Field
>>> from itemadapter import ItemAdapter
>>> class InventoryItem(Item):
...     name = Field()
...     price = Field()
...
>>> item = InventoryItem(name="foo", price=10)
>>> adapter = ItemAdapter(item)
>>> adapter.item is item
True
>>> adapter["name"]
'foo'
>>> adapter["name"] = "bar"
>>> adapter["price"] = 5
>>> item
{'name': 'bar', 'price': 5}
>>>
```

### `dict`

```python
>>> from itemadapter import ItemAdapter
>>> item = dict(name="foo", price=10)
>>> adapter = ItemAdapter(item)
>>> adapter.item is item
True
>>> adapter["name"]
'foo'
>>> adapter["name"] = "bar"
>>> adapter["price"] = 5
>>> item
{'name': 'bar', 'price': 5}
>>>
```

### `dataclass` objects

```python
>>> from dataclasses import dataclass
>>> from itemadapter import ItemAdapter
>>> @dataclass
... class InventoryItem:
...     name: str
...     price: int
...
>>> item = InventoryItem(name="foo", price=10)
>>> adapter = ItemAdapter(item)
>>> adapter.item is item
True
>>> adapter["name"]
'foo'
>>> adapter["name"] = "bar"
>>> adapter["price"] = 5
>>> item
InventoryItem(name='bar', price=5)
>>>
```

### `attrs` objects

```python
>>> import attr
>>> from itemadapter import ItemAdapter
>>> @attr.s
... class InventoryItem:
...     name = attr.ib()
...     price = attr.ib()
...
>>> item = InventoryItem(name="foo", price=10)
>>> adapter = ItemAdapter(item)
>>> adapter.item is item
True
>>> adapter["name"]
'foo'
>>> adapter["name"] = "bar"
>>> adapter["price"] = 5
>>> item
InventoryItem(name='bar', price=5)
>>>
```

### `pydantic` objects

```python
>>> from pydantic import BaseModel
>>> from itemadapter import ItemAdapter
>>> class InventoryItem(BaseModel):
...     name: str
...     price: int
...
>>> item = InventoryItem(name="foo", price=10)
>>> adapter = ItemAdapter(item)
>>> adapter.item is item
True
>>> adapter["name"]
'foo'
>>> adapter["name"] = "bar"
>>> adapter["price"] = 5
>>> item
InventoryItem(name='bar', price=5)
>>>
```


## Changelog

See the [full changelog](Changelog.md)