File: test_adapter_pydantic_v1.py

package info (click to toggle)
python-itemadapter 0.12.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 304 kB
  • sloc: python: 3,381; makefile: 4
file content (233 lines) | stat: -rw-r--r-- 8,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import unittest
from types import MappingProxyType
from unittest import mock

from itemadapter.adapter import ItemAdapter
from itemadapter.utils import get_field_meta_from_class
from tests import (
    AttrsItem,
    DataClassItem,
    PydanticV1Model,
    PydanticV1SpecialCasesModel,
    ScrapyItem,
    ScrapySubclassedItem,
    clear_itemadapter_imports,
    make_mock_import,
)


class PydanticTestCase(unittest.TestCase):
    def test_false(self):
        from itemadapter.adapter import PydanticAdapter

        self.assertFalse(PydanticAdapter.is_item(int))
        self.assertFalse(PydanticAdapter.is_item(sum))
        self.assertFalse(PydanticAdapter.is_item(1234))
        self.assertFalse(PydanticAdapter.is_item(object()))
        self.assertFalse(PydanticAdapter.is_item(DataClassItem()))
        self.assertFalse(PydanticAdapter.is_item("a string"))
        self.assertFalse(PydanticAdapter.is_item(b"some bytes"))
        self.assertFalse(PydanticAdapter.is_item({"a": "dict"}))
        self.assertFalse(PydanticAdapter.is_item(["a", "list"]))
        self.assertFalse(PydanticAdapter.is_item(("a", "tuple")))
        self.assertFalse(PydanticAdapter.is_item({"a", "set"}))
        self.assertFalse(PydanticAdapter.is_item(PydanticV1Model))

        try:
            import attrs  # noqa: F401  # pylint: disable=unused-import
        except ImportError:
            pass
        else:
            self.assertFalse(PydanticAdapter.is_item(AttrsItem()))

        try:
            import scrapy  # noqa: F401  # pylint: disable=unused-import
        except ImportError:
            pass
        else:
            self.assertFalse(PydanticAdapter.is_item(ScrapyItem()))
            self.assertFalse(PydanticAdapter.is_item(ScrapySubclassedItem()))

    @unittest.skipIf(not PydanticV1Model, "pydantic <2 module is not available")
    @mock.patch("builtins.__import__", make_mock_import("pydantic"))
    def test_module_import_error(self):
        with clear_itemadapter_imports():
            from itemadapter.adapter import PydanticAdapter

            self.assertFalse(PydanticAdapter.is_item(PydanticV1Model(name="asdf", value=1234)))
            with self.assertRaises(TypeError, msg="PydanticV1Model is not a valid item class"):
                get_field_meta_from_class(PydanticV1Model, "name")

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    @mock.patch("itemadapter.utils.pydantic", None)
    @mock.patch("itemadapter.utils.pydantic_v1", None)
    def test_module_not_available(self):
        from itemadapter.adapter import PydanticAdapter

        self.assertFalse(PydanticAdapter.is_item(PydanticV1Model(name="asdf", value=1234)))
        with self.assertRaises(TypeError, msg="PydanticV1Model is not a valid item class"):
            get_field_meta_from_class(PydanticV1Model, "name")

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_true(self):
        from itemadapter.adapter import PydanticAdapter

        self.assertTrue(PydanticAdapter.is_item(PydanticV1Model()))
        self.assertTrue(PydanticAdapter.is_item(PydanticV1Model(name="asdf", value=1234)))
        # field metadata
        actual = get_field_meta_from_class(PydanticV1Model, "name")
        self.assertEqual(
            actual,
            MappingProxyType({"serializer": str, "default_factory": actual["default_factory"]}),
        )
        actual = get_field_meta_from_class(PydanticV1Model, "value")
        self.assertEqual(
            actual,
            MappingProxyType({"serializer": int, "default_factory": actual["default_factory"]}),
        )
        actual = get_field_meta_from_class(PydanticV1SpecialCasesModel, "special_cases")
        self.assertEqual(
            actual,
            MappingProxyType(
                {
                    "alias": "special_cases",
                    "allow_mutation": False,
                    "default_factory": actual["default_factory"],
                }
            ),
        )
        with self.assertRaises(
            KeyError, msg="PydanticV1Model does not support field: non_existent"
        ):
            get_field_meta_from_class(PydanticV1Model, "non_existent")

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_json_schema_forbid(self):
        from itemadapter._imports import pydantic_v1

        class Item(pydantic_v1.BaseModel):
            foo: str

            class Config:
                extra = "forbid"

        actual = ItemAdapter.get_json_schema(Item)
        expected = {
            "type": "object",
            "properties": {
                "foo": {"type": "string"},
            },
            "required": ["foo"],
            "additionalProperties": False,
        }

        self.assertEqual(expected, actual)

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_json_schema_field_deprecated_bool(self):
        from itemadapter._imports import pydantic_v1

        class Item(pydantic_v1.BaseModel):
            foo: str = pydantic_v1.Field(deprecated=True)

        actual = ItemAdapter.get_json_schema(Item)
        expected = {
            "type": "object",
            "properties": {
                "foo": {"type": "string", "deprecated": True},
            },
            "required": ["foo"],
        }

        self.assertEqual(expected, actual)

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_json_schema_field_deprecated_str(self):
        from itemadapter._imports import pydantic_v1

        class Item(pydantic_v1.BaseModel):
            foo: str = pydantic_v1.Field(deprecated="Use something else")

        actual = ItemAdapter.get_json_schema(Item)
        expected = {
            "type": "object",
            "properties": {
                "foo": {"type": "string", "deprecated": True},
            },
            "required": ["foo"],
        }

        self.assertEqual(expected, actual)

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_json_schema_field_default_factory(self):
        from itemadapter._imports import pydantic_v1

        class Item(pydantic_v1.BaseModel):
            foo: str = pydantic_v1.Field(default_factory=lambda: "bar")

        actual = ItemAdapter.get_json_schema(Item)
        expected = {
            "type": "object",
            "properties": {
                "foo": {"type": "string"},
            },
        }

        self.assertEqual(expected, actual)

    @unittest.skipIf(not PydanticV1Model, "pydantic module is not available")
    def test_json_schema_validators(self):
        from itemadapter._imports import pydantic_v1

        class Model(pydantic_v1.BaseModel):
            # String with min/max length and regex pattern
            name: str = pydantic_v1.Field(
                min_length=3,
                max_length=10,
                pattern=r"^[A-Za-z]+$",
            )
            # Integer with minimum, maximum, exclusive minimum, exclusive maximum
            age1: int = pydantic_v1.Field(
                gt=17,
                lt=100,
            )
            age2: int = pydantic_v1.Field(
                ge=18,
                le=99,
            )
            # Sequence with max_items
            tags: set[str] = pydantic_v1.Field(max_items=50)

        actual = ItemAdapter.get_json_schema(Model)
        expected = {
            "type": "object",
            "properties": {
                "name": {
                    "type": "string",
                    "minLength": 3,
                    "maxLength": 10,
                    "pattern": "^[A-Za-z]+$",
                },
                "age1": {
                    "type": "integer",
                    "exclusiveMinimum": 17,
                    "exclusiveMaximum": 100,
                },
                "age2": {
                    "type": "integer",
                    "minimum": 18,
                    "maximum": 99,
                },
                "tags": {
                    "type": "array",
                    "uniqueItems": True,
                    "maxItems": 50,
                    "items": {
                        "type": "string",
                    },
                },
            },
            "required": ["name", "age1", "age2", "tags"],
        }
        self.assertEqual(expected, actual)