File: cryptography_backend.py

package info (click to toggle)
python-jose 3.3.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 528 kB
  • sloc: python: 4,020; makefile: 162; sh: 6
file content (605 lines) | stat: -rw-r--r-- 22,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import math
import warnings

from cryptography.exceptions import InvalidSignature, InvalidTag
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes, hmac, serialization
from cryptography.hazmat.primitives.asymmetric import ec, padding, rsa
from cryptography.hazmat.primitives.asymmetric.utils import decode_dss_signature, encode_dss_signature
from cryptography.hazmat.primitives.ciphers import Cipher, aead, algorithms, modes
from cryptography.hazmat.primitives.keywrap import InvalidUnwrap, aes_key_unwrap, aes_key_wrap
from cryptography.hazmat.primitives.padding import PKCS7
from cryptography.hazmat.primitives.serialization import load_pem_private_key, load_pem_public_key
from cryptography.utils import int_to_bytes
from cryptography.x509 import load_pem_x509_certificate

from ..constants import ALGORITHMS
from ..exceptions import JWEError, JWKError
from ..utils import base64_to_long, base64url_decode, base64url_encode, ensure_binary, long_to_base64
from .base import Key

_binding = None


def get_random_bytes(num_bytes):
    """
    Get random bytes

    Currently, Cryptography returns OS random bytes. If you want OpenSSL
    generated random bytes, you'll have to switch the RAND engine after
    initializing the OpenSSL backend
    Args:
        num_bytes (int): Number of random bytes to generate and return
    Returns:
        bytes: Random bytes
    """
    global _binding

    if _binding is None:
        _binding = Binding()

    buf = _binding.ffi.new("char[]", num_bytes)
    _binding.lib.RAND_bytes(buf, num_bytes)
    rand_bytes = _binding.ffi.buffer(buf, num_bytes)[:]
    return rand_bytes


class CryptographyECKey(Key):
    SHA256 = hashes.SHA256
    SHA384 = hashes.SHA384
    SHA512 = hashes.SHA512

    def __init__(self, key, algorithm, cryptography_backend=default_backend):
        if algorithm not in ALGORITHMS.EC:
            raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)

        self.hash_alg = {
            ALGORITHMS.ES256: self.SHA256,
            ALGORITHMS.ES384: self.SHA384,
            ALGORITHMS.ES512: self.SHA512,
        }.get(algorithm)
        self._algorithm = algorithm

        self.cryptography_backend = cryptography_backend

        if hasattr(key, "public_bytes") or hasattr(key, "private_bytes"):
            self.prepared_key = key
            return

        if hasattr(key, "to_pem"):
            # convert to PEM and let cryptography below load it as PEM
            key = key.to_pem().decode("utf-8")

        if isinstance(key, dict):
            self.prepared_key = self._process_jwk(key)
            return

        if isinstance(key, str):
            key = key.encode("utf-8")

        if isinstance(key, bytes):
            # Attempt to load key. We don't know if it's
            # a Public Key or a Private Key, so we try
            # the Public Key first.
            try:
                try:
                    key = load_pem_public_key(key, self.cryptography_backend())
                except ValueError:
                    key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
            except Exception as e:
                raise JWKError(e)

            self.prepared_key = key
            return

        raise JWKError("Unable to parse an ECKey from key: %s" % key)

    def _process_jwk(self, jwk_dict):
        if not jwk_dict.get("kty") == "EC":
            raise JWKError("Incorrect key type. Expected: 'EC', Received: %s" % jwk_dict.get("kty"))

        if not all(k in jwk_dict for k in ["x", "y", "crv"]):
            raise JWKError("Mandatory parameters are missing")

        x = base64_to_long(jwk_dict.get("x"))
        y = base64_to_long(jwk_dict.get("y"))
        curve = {
            "P-256": ec.SECP256R1,
            "P-384": ec.SECP384R1,
            "P-521": ec.SECP521R1,
        }[jwk_dict["crv"]]

        public = ec.EllipticCurvePublicNumbers(x, y, curve())

        if "d" in jwk_dict:
            d = base64_to_long(jwk_dict.get("d"))
            private = ec.EllipticCurvePrivateNumbers(d, public)

            return private.private_key(self.cryptography_backend())
        else:
            return public.public_key(self.cryptography_backend())

    def _sig_component_length(self):
        """Determine the correct serialization length for an encoded signature component.

        This is the number of bytes required to encode the maximum key value.
        """
        return int(math.ceil(self.prepared_key.key_size / 8.0))

    def _der_to_raw(self, der_signature):
        """Convert signature from DER encoding to RAW encoding."""
        r, s = decode_dss_signature(der_signature)
        component_length = self._sig_component_length()
        return int_to_bytes(r, component_length) + int_to_bytes(s, component_length)

    def _raw_to_der(self, raw_signature):
        """Convert signature from RAW encoding to DER encoding."""
        component_length = self._sig_component_length()
        if len(raw_signature) != int(2 * component_length):
            raise ValueError("Invalid signature")

        r_bytes = raw_signature[:component_length]
        s_bytes = raw_signature[component_length:]
        r = int.from_bytes(r_bytes, "big")
        s = int.from_bytes(s_bytes, "big")
        return encode_dss_signature(r, s)

    def sign(self, msg):
        if self.hash_alg.digest_size * 8 > self.prepared_key.curve.key_size:
            raise TypeError(
                "this curve (%s) is too short "
                "for your digest (%d)" % (self.prepared_key.curve.name, 8 * self.hash_alg.digest_size)
            )
        signature = self.prepared_key.sign(msg, ec.ECDSA(self.hash_alg()))
        return self._der_to_raw(signature)

    def verify(self, msg, sig):
        try:
            signature = self._raw_to_der(sig)
            self.prepared_key.verify(signature, msg, ec.ECDSA(self.hash_alg()))
            return True
        except Exception:
            return False

    def is_public(self):
        return hasattr(self.prepared_key, "public_bytes")

    def public_key(self):
        if self.is_public():
            return self
        return self.__class__(self.prepared_key.public_key(), self._algorithm)

    def to_pem(self):
        if self.is_public():
            pem = self.prepared_key.public_bytes(
                encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo
            )
            return pem
        pem = self.prepared_key.private_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PrivateFormat.TraditionalOpenSSL,
            encryption_algorithm=serialization.NoEncryption(),
        )
        return pem

    def to_dict(self):
        if not self.is_public():
            public_key = self.prepared_key.public_key()
        else:
            public_key = self.prepared_key

        crv = {
            "secp256r1": "P-256",
            "secp384r1": "P-384",
            "secp521r1": "P-521",
        }[self.prepared_key.curve.name]

        # Calculate the key size in bytes. Section 6.2.1.2 and 6.2.1.3 of
        # RFC7518 prescribes that the 'x', 'y' and 'd' parameters of the curve
        # points must be encoded as octed-strings of this length.
        key_size = (self.prepared_key.curve.key_size + 7) // 8

        data = {
            "alg": self._algorithm,
            "kty": "EC",
            "crv": crv,
            "x": long_to_base64(public_key.public_numbers().x, size=key_size).decode("ASCII"),
            "y": long_to_base64(public_key.public_numbers().y, size=key_size).decode("ASCII"),
        }

        if not self.is_public():
            private_value = self.prepared_key.private_numbers().private_value
            data["d"] = long_to_base64(private_value, size=key_size).decode("ASCII")

        return data


class CryptographyRSAKey(Key):
    SHA256 = hashes.SHA256
    SHA384 = hashes.SHA384
    SHA512 = hashes.SHA512

    RSA1_5 = padding.PKCS1v15()
    RSA_OAEP = padding.OAEP(padding.MGF1(hashes.SHA1()), hashes.SHA1(), None)
    RSA_OAEP_256 = padding.OAEP(padding.MGF1(hashes.SHA256()), hashes.SHA256(), None)

    def __init__(self, key, algorithm, cryptography_backend=default_backend):
        if algorithm not in ALGORITHMS.RSA:
            raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)

        self.hash_alg = {
            ALGORITHMS.RS256: self.SHA256,
            ALGORITHMS.RS384: self.SHA384,
            ALGORITHMS.RS512: self.SHA512,
        }.get(algorithm)
        self._algorithm = algorithm

        self.padding = {
            ALGORITHMS.RSA1_5: self.RSA1_5,
            ALGORITHMS.RSA_OAEP: self.RSA_OAEP,
            ALGORITHMS.RSA_OAEP_256: self.RSA_OAEP_256,
        }.get(algorithm)

        self.cryptography_backend = cryptography_backend

        # if it conforms to RSAPublicKey interface
        if hasattr(key, "public_bytes") and hasattr(key, "public_numbers"):
            self.prepared_key = key
            return

        if isinstance(key, dict):
            self.prepared_key = self._process_jwk(key)
            return

        if isinstance(key, str):
            key = key.encode("utf-8")

        if isinstance(key, bytes):
            try:
                if key.startswith(b"-----BEGIN CERTIFICATE-----"):
                    self._process_cert(key)
                    return

                try:
                    self.prepared_key = load_pem_public_key(key, self.cryptography_backend())
                except ValueError:
                    self.prepared_key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
            except Exception as e:
                raise JWKError(e)
            return

        raise JWKError("Unable to parse an RSA_JWK from key: %s" % key)

    def _process_jwk(self, jwk_dict):
        if not jwk_dict.get("kty") == "RSA":
            raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get("kty"))

        e = base64_to_long(jwk_dict.get("e", 256))
        n = base64_to_long(jwk_dict.get("n"))
        public = rsa.RSAPublicNumbers(e, n)

        if "d" not in jwk_dict:
            return public.public_key(self.cryptography_backend())
        else:
            # This is a private key.
            d = base64_to_long(jwk_dict.get("d"))

            extra_params = ["p", "q", "dp", "dq", "qi"]

            if any(k in jwk_dict for k in extra_params):
                # Precomputed private key parameters are available.
                if not all(k in jwk_dict for k in extra_params):
                    # These values must be present when 'p' is according to
                    # Section 6.3.2 of RFC7518, so if they are not we raise
                    # an error.
                    raise JWKError("Precomputed private key parameters are incomplete.")

                p = base64_to_long(jwk_dict["p"])
                q = base64_to_long(jwk_dict["q"])
                dp = base64_to_long(jwk_dict["dp"])
                dq = base64_to_long(jwk_dict["dq"])
                qi = base64_to_long(jwk_dict["qi"])
            else:
                # The precomputed private key parameters are not available,
                # so we use cryptography's API to fill them in.
                p, q = rsa.rsa_recover_prime_factors(n, e, d)
                dp = rsa.rsa_crt_dmp1(d, p)
                dq = rsa.rsa_crt_dmq1(d, q)
                qi = rsa.rsa_crt_iqmp(p, q)

            private = rsa.RSAPrivateNumbers(p, q, d, dp, dq, qi, public)

            return private.private_key(self.cryptography_backend())

    def _process_cert(self, key):
        key = load_pem_x509_certificate(key, self.cryptography_backend())
        self.prepared_key = key.public_key()

    def sign(self, msg):
        try:
            signature = self.prepared_key.sign(msg, padding.PKCS1v15(), self.hash_alg())
        except Exception as e:
            raise JWKError(e)
        return signature

    def verify(self, msg, sig):
        if not self.is_public():
            warnings.warn("Attempting to verify a message with a private key. " "This is not recommended.")

        try:
            self.public_key().prepared_key.verify(sig, msg, padding.PKCS1v15(), self.hash_alg())
            return True
        except InvalidSignature:
            return False

    def is_public(self):
        return hasattr(self.prepared_key, "public_bytes")

    def public_key(self):
        if self.is_public():
            return self
        return self.__class__(self.prepared_key.public_key(), self._algorithm)

    def to_pem(self, pem_format="PKCS8"):
        if self.is_public():
            if pem_format == "PKCS8":
                fmt = serialization.PublicFormat.SubjectPublicKeyInfo
            elif pem_format == "PKCS1":
                fmt = serialization.PublicFormat.PKCS1
            else:
                raise ValueError("Invalid format specified: %r" % pem_format)
            pem = self.prepared_key.public_bytes(encoding=serialization.Encoding.PEM, format=fmt)
            return pem

        if pem_format == "PKCS8":
            fmt = serialization.PrivateFormat.PKCS8
        elif pem_format == "PKCS1":
            fmt = serialization.PrivateFormat.TraditionalOpenSSL
        else:
            raise ValueError("Invalid format specified: %r" % pem_format)

        return self.prepared_key.private_bytes(
            encoding=serialization.Encoding.PEM, format=fmt, encryption_algorithm=serialization.NoEncryption()
        )

    def to_dict(self):
        if not self.is_public():
            public_key = self.prepared_key.public_key()
        else:
            public_key = self.prepared_key

        data = {
            "alg": self._algorithm,
            "kty": "RSA",
            "n": long_to_base64(public_key.public_numbers().n).decode("ASCII"),
            "e": long_to_base64(public_key.public_numbers().e).decode("ASCII"),
        }

        if not self.is_public():
            data.update(
                {
                    "d": long_to_base64(self.prepared_key.private_numbers().d).decode("ASCII"),
                    "p": long_to_base64(self.prepared_key.private_numbers().p).decode("ASCII"),
                    "q": long_to_base64(self.prepared_key.private_numbers().q).decode("ASCII"),
                    "dp": long_to_base64(self.prepared_key.private_numbers().dmp1).decode("ASCII"),
                    "dq": long_to_base64(self.prepared_key.private_numbers().dmq1).decode("ASCII"),
                    "qi": long_to_base64(self.prepared_key.private_numbers().iqmp).decode("ASCII"),
                }
            )

        return data

    def wrap_key(self, key_data):
        try:
            wrapped_key = self.prepared_key.encrypt(key_data, self.padding)
        except Exception as e:
            raise JWEError(e)

        return wrapped_key

    def unwrap_key(self, wrapped_key):
        try:
            unwrapped_key = self.prepared_key.decrypt(wrapped_key, self.padding)
            return unwrapped_key
        except Exception as e:
            raise JWEError(e)


class CryptographyAESKey(Key):
    KEY_128 = (ALGORITHMS.A128GCM, ALGORITHMS.A128GCMKW, ALGORITHMS.A128KW, ALGORITHMS.A128CBC)
    KEY_192 = (ALGORITHMS.A192GCM, ALGORITHMS.A192GCMKW, ALGORITHMS.A192KW, ALGORITHMS.A192CBC)
    KEY_256 = (
        ALGORITHMS.A256GCM,
        ALGORITHMS.A256GCMKW,
        ALGORITHMS.A256KW,
        ALGORITHMS.A128CBC_HS256,
        ALGORITHMS.A256CBC,
    )
    KEY_384 = (ALGORITHMS.A192CBC_HS384,)
    KEY_512 = (ALGORITHMS.A256CBC_HS512,)

    AES_KW_ALGS = (ALGORITHMS.A128KW, ALGORITHMS.A192KW, ALGORITHMS.A256KW)

    MODES = {
        ALGORITHMS.A128GCM: modes.GCM,
        ALGORITHMS.A192GCM: modes.GCM,
        ALGORITHMS.A256GCM: modes.GCM,
        ALGORITHMS.A128CBC_HS256: modes.CBC,
        ALGORITHMS.A192CBC_HS384: modes.CBC,
        ALGORITHMS.A256CBC_HS512: modes.CBC,
        ALGORITHMS.A128CBC: modes.CBC,
        ALGORITHMS.A192CBC: modes.CBC,
        ALGORITHMS.A256CBC: modes.CBC,
        ALGORITHMS.A128GCMKW: modes.GCM,
        ALGORITHMS.A192GCMKW: modes.GCM,
        ALGORITHMS.A256GCMKW: modes.GCM,
        ALGORITHMS.A128KW: None,
        ALGORITHMS.A192KW: None,
        ALGORITHMS.A256KW: None,
    }

    def __init__(self, key, algorithm):
        if algorithm not in ALGORITHMS.AES:
            raise JWKError("%s is not a valid AES algorithm" % algorithm)
        if algorithm not in ALGORITHMS.SUPPORTED.union(ALGORITHMS.AES_PSEUDO):
            raise JWKError("%s is not a supported algorithm" % algorithm)

        self._algorithm = algorithm
        self._mode = self.MODES.get(self._algorithm)

        if algorithm in self.KEY_128 and len(key) != 16:
            raise JWKError(f"Key must be 128 bit for alg {algorithm}")
        elif algorithm in self.KEY_192 and len(key) != 24:
            raise JWKError(f"Key must be 192 bit for alg {algorithm}")
        elif algorithm in self.KEY_256 and len(key) != 32:
            raise JWKError(f"Key must be 256 bit for alg {algorithm}")
        elif algorithm in self.KEY_384 and len(key) != 48:
            raise JWKError(f"Key must be 384 bit for alg {algorithm}")
        elif algorithm in self.KEY_512 and len(key) != 64:
            raise JWKError(f"Key must be 512 bit for alg {algorithm}")

        self._key = key

    def to_dict(self):
        data = {"alg": self._algorithm, "kty": "oct", "k": base64url_encode(self._key)}
        return data

    def encrypt(self, plain_text, aad=None):
        plain_text = ensure_binary(plain_text)
        try:
            iv = get_random_bytes(algorithms.AES.block_size // 8)
            mode = self._mode(iv)
            if mode.name == "GCM":
                cipher = aead.AESGCM(self._key)
                cipher_text_and_tag = cipher.encrypt(iv, plain_text, aad)
                cipher_text = cipher_text_and_tag[: len(cipher_text_and_tag) - 16]
                auth_tag = cipher_text_and_tag[-16:]
            else:
                cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
                encryptor = cipher.encryptor()
                padder = PKCS7(algorithms.AES.block_size).padder()
                padded_data = padder.update(plain_text)
                padded_data += padder.finalize()
                cipher_text = encryptor.update(padded_data) + encryptor.finalize()
                auth_tag = None
            return iv, cipher_text, auth_tag
        except Exception as e:
            raise JWEError(e)

    def decrypt(self, cipher_text, iv=None, aad=None, tag=None):
        cipher_text = ensure_binary(cipher_text)
        try:
            iv = ensure_binary(iv)
            mode = self._mode(iv)
            if mode.name == "GCM":
                if tag is None:
                    raise ValueError("tag cannot be None")
                cipher = aead.AESGCM(self._key)
                cipher_text_and_tag = cipher_text + tag
                try:
                    plain_text = cipher.decrypt(iv, cipher_text_and_tag, aad)
                except InvalidTag:
                    raise JWEError("Invalid JWE Auth Tag")
            else:
                cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
                decryptor = cipher.decryptor()
                padded_plain_text = decryptor.update(cipher_text)
                padded_plain_text += decryptor.finalize()
                unpadder = PKCS7(algorithms.AES.block_size).unpadder()
                plain_text = unpadder.update(padded_plain_text)
                plain_text += unpadder.finalize()

            return plain_text
        except Exception as e:
            raise JWEError(e)

    def wrap_key(self, key_data):
        key_data = ensure_binary(key_data)
        cipher_text = aes_key_wrap(self._key, key_data, default_backend())
        return cipher_text  # IV, cipher text, auth tag

    def unwrap_key(self, wrapped_key):
        wrapped_key = ensure_binary(wrapped_key)
        try:
            plain_text = aes_key_unwrap(self._key, wrapped_key, default_backend())
        except InvalidUnwrap as cause:
            raise JWEError(cause)
        return plain_text


class CryptographyHMACKey(Key):
    """
    Performs signing and verification operations using HMAC
    and the specified hash function.
    """

    ALG_MAP = {ALGORITHMS.HS256: hashes.SHA256(), ALGORITHMS.HS384: hashes.SHA384(), ALGORITHMS.HS512: hashes.SHA512()}

    def __init__(self, key, algorithm):
        if algorithm not in ALGORITHMS.HMAC:
            raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
        self._algorithm = algorithm
        self._hash_alg = self.ALG_MAP.get(algorithm)

        if isinstance(key, dict):
            self.prepared_key = self._process_jwk(key)
            return

        if not isinstance(key, str) and not isinstance(key, bytes):
            raise JWKError("Expecting a string- or bytes-formatted key.")

        if isinstance(key, str):
            key = key.encode("utf-8")

        invalid_strings = [
            b"-----BEGIN PUBLIC KEY-----",
            b"-----BEGIN RSA PUBLIC KEY-----",
            b"-----BEGIN CERTIFICATE-----",
            b"ssh-rsa",
        ]

        if any(string_value in key for string_value in invalid_strings):
            raise JWKError(
                "The specified key is an asymmetric key or x509 certificate and"
                " should not be used as an HMAC secret."
            )

        self.prepared_key = key

    def _process_jwk(self, jwk_dict):
        if not jwk_dict.get("kty") == "oct":
            raise JWKError("Incorrect key type. Expected: 'oct', Received: %s" % jwk_dict.get("kty"))

        k = jwk_dict.get("k")
        k = k.encode("utf-8")
        k = bytes(k)
        k = base64url_decode(k)

        return k

    def to_dict(self):
        return {
            "alg": self._algorithm,
            "kty": "oct",
            "k": base64url_encode(self.prepared_key).decode("ASCII"),
        }

    def sign(self, msg):
        msg = ensure_binary(msg)
        h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
        h.update(msg)
        signature = h.finalize()
        return signature

    def verify(self, msg, sig):
        msg = ensure_binary(msg)
        sig = ensure_binary(sig)
        h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
        h.update(msg)
        try:
            h.verify(sig)
            verified = True
        except InvalidSignature:
            verified = False
        return verified