1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
Usage
=====
SimpleProducer
--------------
.. code:: python
from kafka import SimpleProducer, KafkaClient
# To send messages synchronously
kafka = KafkaClient('localhost:9092')
producer = SimpleProducer(kafka)
# Note that the application is responsible for encoding messages to type bytes
producer.send_messages(b'my-topic', b'some message')
producer.send_messages(b'my-topic', b'this method', b'is variadic')
# Send unicode message
producer.send_messages(b'my-topic', u'你怎么样?'.encode('utf-8'))
Asynchronous Mode
-----------------
.. code:: python
# To send messages asynchronously
producer = SimpleProducer(kafka, async=True)
producer.send_messages(b'my-topic', b'async message')
# To wait for acknowledgements
# ACK_AFTER_LOCAL_WRITE : server will wait till the data is written to
# a local log before sending response
# ACK_AFTER_CLUSTER_COMMIT : server will block until the message is committed
# by all in sync replicas before sending a response
producer = SimpleProducer(kafka, async=False,
req_acks=SimpleProducer.ACK_AFTER_LOCAL_WRITE,
ack_timeout=2000,
sync_fail_on_error=False)
responses = producer.send_messages(b'my-topic', b'another message')
for r in responses:
logging.info(r.offset)
# To send messages in batch. You can use any of the available
# producers for doing this. The following producer will collect
# messages in batch and send them to Kafka after 20 messages are
# collected or every 60 seconds
# Notes:
# * If the producer dies before the messages are sent, there will be losses
# * Call producer.stop() to send the messages and cleanup
producer = SimpleProducer(kafka, async=True,
batch_send_every_n=20,
batch_send_every_t=60)
Keyed messages
--------------
.. code:: python
from kafka import (
KafkaClient, KeyedProducer,
Murmur2Partitioner, RoundRobinPartitioner)
kafka = KafkaClient('localhost:9092')
# HashedPartitioner is default (currently uses python hash())
producer = KeyedProducer(kafka)
producer.send_messages(b'my-topic', b'key1', b'some message')
producer.send_messages(b'my-topic', b'key2', b'this methode')
# Murmur2Partitioner attempts to mirror the java client hashing
producer = KeyedProducer(kafka, partitioner=Murmur2Partitioner)
# Or just produce round-robin (or just use SimpleProducer)
producer = KeyedProducer(kafka, partitioner=RoundRobinPartitioner)
KafkaConsumer
-------------
.. code:: python
from kafka import KafkaConsumer
# To consume messages
consumer = KafkaConsumer('my-topic',
group_id='my_group',
bootstrap_servers=['localhost:9092'])
for message in consumer:
# message value is raw byte string -- decode if necessary!
# e.g., for unicode: `message.value.decode('utf-8')`
print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
message.offset, message.key,
message.value))
messages (m) are namedtuples with attributes:
* `m.topic`: topic name (str)
* `m.partition`: partition number (int)
* `m.offset`: message offset on topic-partition log (int)
* `m.key`: key (bytes - can be None)
* `m.value`: message (output of deserializer_class - default is raw bytes)
.. code:: python
from kafka import KafkaConsumer
# more advanced consumer -- multiple topics w/ auto commit offset
# management
consumer = KafkaConsumer('topic1', 'topic2',
bootstrap_servers=['localhost:9092'],
group_id='my_consumer_group',
auto_commit_enable=True,
auto_commit_interval_ms=30 * 1000,
auto_offset_reset='smallest')
# Infinite iteration
for m in consumer:
do_some_work(m)
# Mark this message as fully consumed
# so it can be included in the next commit
#
# **messages that are not marked w/ task_done currently do not commit!
consumer.task_done(m)
# If auto_commit_enable is False, remember to commit() periodically
consumer.commit()
# Batch process interface
while True:
for m in kafka.fetch_messages():
process_message(m)
consumer.task_done(m)
Configuration settings can be passed to constructor,
otherwise defaults will be used:
.. code:: python
client_id='kafka.consumer.kafka',
group_id=None,
fetch_message_max_bytes=1024*1024,
fetch_min_bytes=1,
fetch_wait_max_ms=100,
refresh_leader_backoff_ms=200,
bootstrap_servers=[],
socket_timeout_ms=30*1000,
auto_offset_reset='largest',
deserializer_class=lambda msg: msg,
auto_commit_enable=False,
auto_commit_interval_ms=60 * 1000,
consumer_timeout_ms=-1
Configuration parameters are described in more detail at
http://kafka.apache.org/documentation.html#highlevelconsumerapi
Multiprocess consumer
---------------------
.. code:: python
from kafka import KafkaClient, MultiProcessConsumer
kafka = KafkaClient('localhost:9092')
# This will split the number of partitions among two processes
consumer = MultiProcessConsumer(kafka, b'my-group', b'my-topic', num_procs=2)
# This will spawn processes such that each handles 2 partitions max
consumer = MultiProcessConsumer(kafka, b'my-group', b'my-topic',
partitions_per_proc=2)
for message in consumer:
print(message)
for message in consumer.get_messages(count=5, block=True, timeout=4):
print(message)
Low level
---------
.. code:: python
from kafka import KafkaClient, create_message
from kafka.protocol import KafkaProtocol
from kafka.common import ProduceRequest
kafka = KafkaClient('localhost:9092')
req = ProduceRequest(topic=b'my-topic', partition=1,
messages=[create_message(b'some message')])
resps = kafka.send_produce_request(payloads=[req], fail_on_error=True)
kafka.close()
resps[0].topic # b'my-topic'
resps[0].partition # 1
resps[0].error # 0 (hopefully)
resps[0].offset # offset of the first message sent in this request
|