1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#!/usr/bin/env python
# Adapted from https://github.com/mrafayaleem/kafka-jython
from __future__ import absolute_import, print_function
import argparse
import pprint
import sys
import threading
import traceback
from kafka.vendor.six.moves import range
from kafka import KafkaProducer
from test.fixtures import KafkaFixture, ZookeeperFixture
def start_brokers(n):
print('Starting {0} {1}-node cluster...'.format(KafkaFixture.kafka_version, n))
print('-> 1 Zookeeper')
zk = ZookeeperFixture.instance()
print('---> {0}:{1}'.format(zk.host, zk.port))
print()
partitions = min(n, 3)
replicas = min(n, 3)
print('-> {0} Brokers [{1} partitions / {2} replicas]'.format(n, partitions, replicas))
brokers = [
KafkaFixture.instance(i, zk, zk_chroot='',
partitions=partitions, replicas=replicas)
for i in range(n)
]
for broker in brokers:
print('---> {0}:{1}'.format(broker.host, broker.port))
print()
return brokers
class ProducerPerformance(object):
@staticmethod
def run(args):
try:
props = {}
for prop in args.producer_config:
k, v = prop.split('=')
try:
v = int(v)
except ValueError:
pass
if v == 'None':
v = None
props[k] = v
if args.brokers:
brokers = start_brokers(args.brokers)
props['bootstrap_servers'] = ['{0}:{1}'.format(broker.host, broker.port)
for broker in brokers]
print("---> bootstrap_servers={0}".format(props['bootstrap_servers']))
print()
print('-> OK!')
print()
print('Initializing producer...')
record = bytes(bytearray(args.record_size))
props['metrics_sample_window_ms'] = args.stats_interval * 1000
producer = KafkaProducer(**props)
for k, v in props.items():
print('---> {0}={1}'.format(k, v))
print('---> send {0} byte records'.format(args.record_size))
print('---> report stats every {0} secs'.format(args.stats_interval))
print('---> raw metrics? {0}'.format(args.raw_metrics))
timer_stop = threading.Event()
timer = StatsReporter(args.stats_interval, producer,
event=timer_stop,
raw_metrics=args.raw_metrics)
timer.start()
print('-> OK!')
print()
for i in range(args.num_records):
producer.send(topic=args.topic, value=record)
producer.flush()
timer_stop.set()
except Exception:
exc_info = sys.exc_info()
traceback.print_exception(*exc_info)
sys.exit(1)
class StatsReporter(threading.Thread):
def __init__(self, interval, producer, event=None, raw_metrics=False):
super(StatsReporter, self).__init__()
self.interval = interval
self.producer = producer
self.event = event
self.raw_metrics = raw_metrics
def print_stats(self):
metrics = self.producer.metrics()
if self.raw_metrics:
pprint.pprint(metrics)
else:
print('{record-send-rate} records/sec ({byte-rate} B/sec),'
' {request-latency-avg} latency,'
' {record-size-avg} record size,'
' {batch-size-avg} batch size,'
' {records-per-request-avg} records/req'
.format(**metrics['producer-metrics']))
def print_final(self):
self.print_stats()
def run(self):
while self.event and not self.event.wait(self.interval):
self.print_stats()
else:
self.print_final()
def get_args_parser():
parser = argparse.ArgumentParser(
description='This tool is used to verify the producer performance.')
parser.add_argument(
'--topic', type=str,
help='Topic name for test',
default='kafka-python-benchmark-test')
parser.add_argument(
'--num-records', type=int,
help='number of messages to produce',
default=1000000)
parser.add_argument(
'--record-size', type=int,
help='message size in bytes',
default=100)
parser.add_argument(
'--producer-config', type=str, nargs='+', default=(),
help='kafka producer related configuaration properties like '
'bootstrap_servers,client_id etc..')
parser.add_argument(
'--brokers', type=int,
help='Number of kafka brokers to start',
default=0)
parser.add_argument(
'--stats-interval', type=int,
help='Interval in seconds for stats reporting to console',
default=5)
parser.add_argument(
'--raw-metrics', action='store_true',
help='Enable this flag to print full metrics dict on each interval')
return parser
if __name__ == '__main__':
args = get_args_parser().parse_args()
ProducerPerformance.run(args)
|