1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
from __future__ import absolute_import, division
import collections
import copy
import logging
import threading
import time
from kafka.vendor import six
from kafka import errors as Errors
from kafka.metrics.measurable import AnonMeasurable
from kafka.metrics.stats import Avg, Max, Rate
from kafka.protocol.produce import ProduceRequest
from kafka.structs import TopicPartition
from kafka.version import __version__
log = logging.getLogger(__name__)
class Sender(threading.Thread):
"""
The background thread that handles the sending of produce requests to the
Kafka cluster. This thread makes metadata requests to renew its view of the
cluster and then sends produce requests to the appropriate nodes.
"""
DEFAULT_CONFIG = {
'max_request_size': 1048576,
'acks': 1,
'retries': 0,
'request_timeout_ms': 30000,
'guarantee_message_order': False,
'client_id': 'kafka-python-' + __version__,
'api_version': (0, 8, 0),
}
def __init__(self, client, metadata, accumulator, metrics, **configs):
super(Sender, self).__init__()
self.config = copy.copy(self.DEFAULT_CONFIG)
for key in self.config:
if key in configs:
self.config[key] = configs.pop(key)
self.name = self.config['client_id'] + '-network-thread'
self._client = client
self._accumulator = accumulator
self._metadata = client.cluster
self._running = True
self._force_close = False
self._topics_to_add = set()
self._sensors = SenderMetrics(metrics, self._client, self._metadata)
def run(self):
"""The main run loop for the sender thread."""
log.debug("Starting Kafka producer I/O thread.")
# main loop, runs until close is called
while self._running:
try:
self.run_once()
except Exception:
log.exception("Uncaught error in kafka producer I/O thread")
log.debug("Beginning shutdown of Kafka producer I/O thread, sending"
" remaining records.")
# okay we stopped accepting requests but there may still be
# requests in the accumulator or waiting for acknowledgment,
# wait until these are completed.
while (not self._force_close
and (self._accumulator.has_unsent()
or self._client.in_flight_request_count() > 0)):
try:
self.run_once()
except Exception:
log.exception("Uncaught error in kafka producer I/O thread")
if self._force_close:
# We need to fail all the incomplete batches and wake up the
# threads waiting on the futures.
self._accumulator.abort_incomplete_batches()
try:
self._client.close()
except Exception:
log.exception("Failed to close network client")
log.debug("Shutdown of Kafka producer I/O thread has completed.")
def run_once(self):
"""Run a single iteration of sending."""
while self._topics_to_add:
self._client.add_topic(self._topics_to_add.pop())
# get the list of partitions with data ready to send
result = self._accumulator.ready(self._metadata)
ready_nodes, next_ready_check_delay, unknown_leaders_exist = result
# if there are any partitions whose leaders are not known yet, force
# metadata update
if unknown_leaders_exist:
log.debug('Unknown leaders exist, requesting metadata update')
self._metadata.request_update()
# remove any nodes we aren't ready to send to
not_ready_timeout = float('inf')
for node in list(ready_nodes):
if not self._client.is_ready(node):
log.debug('Node %s not ready; delaying produce of accumulated batch', node)
self._client.maybe_connect(node, wakeup=False)
ready_nodes.remove(node)
not_ready_timeout = min(not_ready_timeout,
self._client.connection_delay(node))
# create produce requests
batches_by_node = self._accumulator.drain(
self._metadata, ready_nodes, self.config['max_request_size'])
if self.config['guarantee_message_order']:
# Mute all the partitions drained
for batch_list in six.itervalues(batches_by_node):
for batch in batch_list:
self._accumulator.muted.add(batch.topic_partition)
expired_batches = self._accumulator.abort_expired_batches(
self.config['request_timeout_ms'], self._metadata)
for expired_batch in expired_batches:
self._sensors.record_errors(expired_batch.topic_partition.topic, expired_batch.record_count)
self._sensors.update_produce_request_metrics(batches_by_node)
requests = self._create_produce_requests(batches_by_node)
# If we have any nodes that are ready to send + have sendable data,
# poll with 0 timeout so this can immediately loop and try sending more
# data. Otherwise, the timeout is determined by nodes that have
# partitions with data that isn't yet sendable (e.g. lingering, backing
# off). Note that this specifically does not include nodes with
# sendable data that aren't ready to send since they would cause busy
# looping.
poll_timeout_ms = min(next_ready_check_delay * 1000, not_ready_timeout)
if ready_nodes:
log.debug("Nodes with data ready to send: %s", ready_nodes) # trace
log.debug("Created %d produce requests: %s", len(requests), requests) # trace
poll_timeout_ms = 0
for node_id, request in six.iteritems(requests):
batches = batches_by_node[node_id]
log.debug('Sending Produce Request: %r', request)
(self._client.send(node_id, request, wakeup=False)
.add_callback(
self._handle_produce_response, node_id, time.time(), batches)
.add_errback(
self._failed_produce, batches, node_id))
# if some partitions are already ready to be sent, the select time
# would be 0; otherwise if some partition already has some data
# accumulated but not ready yet, the select time will be the time
# difference between now and its linger expiry time; otherwise the
# select time will be the time difference between now and the
# metadata expiry time
self._client.poll(timeout_ms=poll_timeout_ms)
def initiate_close(self):
"""Start closing the sender (won't complete until all data is sent)."""
self._running = False
self._accumulator.close()
self.wakeup()
def force_close(self):
"""Closes the sender without sending out any pending messages."""
self._force_close = True
self.initiate_close()
def add_topic(self, topic):
# This is generally called from a separate thread
# so this needs to be a thread-safe operation
# we assume that checking set membership across threads
# is ok where self._client._topics should never
# remove topics for a producer instance, only add them.
if topic not in self._client._topics:
self._topics_to_add.add(topic)
self.wakeup()
def _failed_produce(self, batches, node_id, error):
log.debug("Error sending produce request to node %d: %s", node_id, error) # trace
for batch in batches:
self._complete_batch(batch, error, -1, None)
def _handle_produce_response(self, node_id, send_time, batches, response):
"""Handle a produce response."""
# if we have a response, parse it
log.debug('Parsing produce response: %r', response)
if response:
batches_by_partition = dict([(batch.topic_partition, batch)
for batch in batches])
for topic, partitions in response.topics:
for partition_info in partitions:
global_error = None
log_start_offset = None
if response.API_VERSION < 2:
partition, error_code, offset = partition_info
ts = None
elif 2 <= response.API_VERSION <= 4:
partition, error_code, offset, ts = partition_info
elif 5 <= response.API_VERSION <= 7:
partition, error_code, offset, ts, log_start_offset = partition_info
else:
# the ignored parameter is record_error of type list[(batch_index: int, error_message: str)]
partition, error_code, offset, ts, log_start_offset, _, global_error = partition_info
tp = TopicPartition(topic, partition)
error = Errors.for_code(error_code)
batch = batches_by_partition[tp]
self._complete_batch(batch, error, offset, ts, log_start_offset, global_error)
if response.API_VERSION > 0:
self._sensors.record_throttle_time(response.throttle_time_ms, node=node_id)
else:
# this is the acks = 0 case, just complete all requests
for batch in batches:
self._complete_batch(batch, None, -1, None)
def _complete_batch(self, batch, error, base_offset, timestamp_ms=None, log_start_offset=None, global_error=None):
"""Complete or retry the given batch of records.
Arguments:
batch (RecordBatch): The record batch
error (Exception): The error (or None if none)
base_offset (int): The base offset assigned to the records if successful
timestamp_ms (int, optional): The timestamp returned by the broker for this batch
log_start_offset (int): The start offset of the log at the time this produce response was created
global_error (str): The summarising error message
"""
# Standardize no-error to None
if error is Errors.NoError:
error = None
if error is not None and self._can_retry(batch, error):
# retry
log.warning("Got error produce response on topic-partition %s,"
" retrying (%d attempts left). Error: %s",
batch.topic_partition,
self.config['retries'] - batch.attempts - 1,
global_error or error)
self._accumulator.reenqueue(batch)
self._sensors.record_retries(batch.topic_partition.topic, batch.record_count)
else:
if error is Errors.TopicAuthorizationFailedError:
error = error(batch.topic_partition.topic)
# tell the user the result of their request
batch.done(base_offset, timestamp_ms, error, log_start_offset, global_error)
self._accumulator.deallocate(batch)
if error is not None:
self._sensors.record_errors(batch.topic_partition.topic, batch.record_count)
if getattr(error, 'invalid_metadata', False):
self._metadata.request_update()
# Unmute the completed partition.
if self.config['guarantee_message_order']:
self._accumulator.muted.remove(batch.topic_partition)
def _can_retry(self, batch, error):
"""
We can retry a send if the error is transient and the number of
attempts taken is fewer than the maximum allowed
"""
return (batch.attempts < self.config['retries']
and getattr(error, 'retriable', False))
def _create_produce_requests(self, collated):
"""
Transfer the record batches into a list of produce requests on a
per-node basis.
Arguments:
collated: {node_id: [RecordBatch]}
Returns:
dict: {node_id: ProduceRequest} (version depends on api_version)
"""
requests = {}
for node_id, batches in six.iteritems(collated):
requests[node_id] = self._produce_request(
node_id, self.config['acks'],
self.config['request_timeout_ms'], batches)
return requests
def _produce_request(self, node_id, acks, timeout, batches):
"""Create a produce request from the given record batches.
Returns:
ProduceRequest (version depends on api_version)
"""
produce_records_by_partition = collections.defaultdict(dict)
for batch in batches:
topic = batch.topic_partition.topic
partition = batch.topic_partition.partition
buf = batch.records.buffer()
produce_records_by_partition[topic][partition] = buf
kwargs = {}
if self.config['api_version'] >= (2, 1):
version = 7
elif self.config['api_version'] >= (2, 0):
version = 6
elif self.config['api_version'] >= (1, 1):
version = 5
elif self.config['api_version'] >= (1, 0):
version = 4
elif self.config['api_version'] >= (0, 11):
version = 3
kwargs = dict(transactional_id=None)
elif self.config['api_version'] >= (0, 10):
version = 2
elif self.config['api_version'] == (0, 9):
version = 1
else:
version = 0
return ProduceRequest[version](
required_acks=acks,
timeout=timeout,
topics=[(topic, list(partition_info.items()))
for topic, partition_info
in six.iteritems(produce_records_by_partition)],
**kwargs
)
def wakeup(self):
"""Wake up the selector associated with this send thread."""
self._client.wakeup()
def bootstrap_connected(self):
return self._client.bootstrap_connected()
class SenderMetrics(object):
def __init__(self, metrics, client, metadata):
self.metrics = metrics
self._client = client
self._metadata = metadata
sensor_name = 'batch-size'
self.batch_size_sensor = self.metrics.sensor(sensor_name)
self.add_metric('batch-size-avg', Avg(),
sensor_name=sensor_name,
description='The average number of bytes sent per partition per-request.')
self.add_metric('batch-size-max', Max(),
sensor_name=sensor_name,
description='The max number of bytes sent per partition per-request.')
sensor_name = 'compression-rate'
self.compression_rate_sensor = self.metrics.sensor(sensor_name)
self.add_metric('compression-rate-avg', Avg(),
sensor_name=sensor_name,
description='The average compression rate of record batches.')
sensor_name = 'queue-time'
self.queue_time_sensor = self.metrics.sensor(sensor_name)
self.add_metric('record-queue-time-avg', Avg(),
sensor_name=sensor_name,
description='The average time in ms record batches spent in the record accumulator.')
self.add_metric('record-queue-time-max', Max(),
sensor_name=sensor_name,
description='The maximum time in ms record batches spent in the record accumulator.')
sensor_name = 'produce-throttle-time'
self.produce_throttle_time_sensor = self.metrics.sensor(sensor_name)
self.add_metric('produce-throttle-time-avg', Avg(),
sensor_name=sensor_name,
description='The average throttle time in ms')
self.add_metric('produce-throttle-time-max', Max(),
sensor_name=sensor_name,
description='The maximum throttle time in ms')
sensor_name = 'records-per-request'
self.records_per_request_sensor = self.metrics.sensor(sensor_name)
self.add_metric('record-send-rate', Rate(),
sensor_name=sensor_name,
description='The average number of records sent per second.')
self.add_metric('records-per-request-avg', Avg(),
sensor_name=sensor_name,
description='The average number of records per request.')
sensor_name = 'bytes'
self.byte_rate_sensor = self.metrics.sensor(sensor_name)
self.add_metric('byte-rate', Rate(),
sensor_name=sensor_name,
description='The average number of bytes sent per second.')
sensor_name = 'record-retries'
self.retry_sensor = self.metrics.sensor(sensor_name)
self.add_metric('record-retry-rate', Rate(),
sensor_name=sensor_name,
description='The average per-second number of retried record sends')
sensor_name = 'errors'
self.error_sensor = self.metrics.sensor(sensor_name)
self.add_metric('record-error-rate', Rate(),
sensor_name=sensor_name,
description='The average per-second number of record sends that resulted in errors')
sensor_name = 'record-size-max'
self.max_record_size_sensor = self.metrics.sensor(sensor_name)
self.add_metric('record-size-max', Max(),
sensor_name=sensor_name,
description='The maximum record size across all batches')
self.add_metric('record-size-avg', Avg(),
sensor_name=sensor_name,
description='The average maximum record size per batch')
self.add_metric('requests-in-flight',
AnonMeasurable(lambda *_: self._client.in_flight_request_count()),
description='The current number of in-flight requests awaiting a response.')
self.add_metric('metadata-age',
AnonMeasurable(lambda _, now: (now - self._metadata._last_successful_refresh_ms) / 1000),
description='The age in seconds of the current producer metadata being used.')
def add_metric(self, metric_name, measurable, group_name='producer-metrics',
description=None, tags=None,
sensor_name=None):
m = self.metrics
metric = m.metric_name(metric_name, group_name, description, tags)
if sensor_name:
sensor = m.sensor(sensor_name)
sensor.add(metric, measurable)
else:
m.add_metric(metric, measurable)
def maybe_register_topic_metrics(self, topic):
def sensor_name(name):
return 'topic.{0}.{1}'.format(topic, name)
# if one sensor of the metrics has been registered for the topic,
# then all other sensors should have been registered; and vice versa
if not self.metrics.get_sensor(sensor_name('records-per-batch')):
self.add_metric('record-send-rate', Rate(),
sensor_name=sensor_name('records-per-batch'),
group_name='producer-topic-metrics.' + topic,
description= 'Records sent per second for topic ' + topic)
self.add_metric('byte-rate', Rate(),
sensor_name=sensor_name('bytes'),
group_name='producer-topic-metrics.' + topic,
description='Bytes per second for topic ' + topic)
self.add_metric('compression-rate', Avg(),
sensor_name=sensor_name('compression-rate'),
group_name='producer-topic-metrics.' + topic,
description='Average Compression ratio for topic ' + topic)
self.add_metric('record-retry-rate', Rate(),
sensor_name=sensor_name('record-retries'),
group_name='producer-topic-metrics.' + topic,
description='Record retries per second for topic ' + topic)
self.add_metric('record-error-rate', Rate(),
sensor_name=sensor_name('record-errors'),
group_name='producer-topic-metrics.' + topic,
description='Record errors per second for topic ' + topic)
def update_produce_request_metrics(self, batches_map):
for node_batch in batches_map.values():
records = 0
total_bytes = 0
for batch in node_batch:
# register all per-topic metrics at once
topic = batch.topic_partition.topic
self.maybe_register_topic_metrics(topic)
# per-topic record send rate
topic_records_count = self.metrics.get_sensor(
'topic.' + topic + '.records-per-batch')
topic_records_count.record(batch.record_count)
# per-topic bytes send rate
topic_byte_rate = self.metrics.get_sensor(
'topic.' + topic + '.bytes')
topic_byte_rate.record(batch.records.size_in_bytes())
# per-topic compression rate
topic_compression_rate = self.metrics.get_sensor(
'topic.' + topic + '.compression-rate')
topic_compression_rate.record(batch.records.compression_rate())
# global metrics
self.batch_size_sensor.record(batch.records.size_in_bytes())
if batch.drained:
self.queue_time_sensor.record(batch.drained - batch.created)
self.compression_rate_sensor.record(batch.records.compression_rate())
self.max_record_size_sensor.record(batch.max_record_size)
records += batch.record_count
total_bytes += batch.records.size_in_bytes()
self.records_per_request_sensor.record(records)
self.byte_rate_sensor.record(total_bytes)
def record_retries(self, topic, count):
self.retry_sensor.record(count)
sensor = self.metrics.get_sensor('topic.' + topic + '.record-retries')
if sensor:
sensor.record(count)
def record_errors(self, topic, count):
self.error_sensor.record(count)
sensor = self.metrics.get_sensor('topic.' + topic + '.record-errors')
if sensor:
sensor.record(count)
def record_throttle_time(self, throttle_time_ms, node=None):
self.produce_throttle_time_sensor.record(throttle_time_ms)
|