File: _kiconversion_to_db.c

package info (click to toggle)
python-kinterbasdb 3.1-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,044 kB
  • ctags: 1,157
  • sloc: ansic: 6,879; python: 2,517; makefile: 77
file content (800 lines) | stat: -rw-r--r-- 28,417 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/* KInterbasDB Python Package - Implementation of Parameter Conversion Py->DB
**
** Version 3.1
**
** The following contributors hold Copyright (C) over their respective
** portions of code (see license.txt for details):
**
** [Original Author (maintained through version 2.0-0.3.1):]
**   1998-2001 [alex]  Alexander Kuznetsov   <alexan@users.sourceforge.net>
** [Maintainers (after version 2.0-0.3.1):]
**   2001-2002 [maz]   Marek Isalski         <kinterbasdb@maz.nu>
**   2002-2004 [dsr]   David Rushby          <woodsplitter@rocketmail.com>
** [Contributors:]
**   2001      [eac]   Evgeny A. Cherkashin  <eugeneai@icc.ru>
**   2001-2002 [janez] Janez Jere            <janez.jere@void.si>
*/

/* This source file is designed to be directly included in _kiconversion.c,
** without the involvement of a header file. */


/******************** FUNCTION PROTOTYPES:BEGIN ********************/
static int _try_to_accept_string_and_convert(PyObject *o, XSQLVAR *sqlvar);

static int _PyObject2XSQLVAR_check_range_SQL_INTEGER(
    short data_type, short data_subtype, short scale,
    PyObject *n, PyObject *min, PyObject *max
  );

static int _PyObject2XSQLVAR_check_range_SQL_CHARACTER(PyObject *o,
    int actualLength, int maxLength
  );
/******************** FUNCTION PROTOTYPES:END ********************/


/******************** CONVENIENCE DEFS:BEGIN ********************/

#define TRY_TO_ACCEPT_STRING_AND_CONVERT(o, sqlvar) \
  if ( _try_to_accept_string_and_convert(o, sqlvar) == INPUT_OK ) { \
    return INPUT_OK; \
  } /* Else, do not immediately return or break. */

/* Don't allocate new memory if we're converting a database array element: */
#define ALLOC_IF_NOT_ARRAY_THEN_SET(buf_ptr, datatype, value) \
  if (!is_array_element) { \
    buf_ptr = (char *) kimem_main_malloc(sizeof(datatype)); \
  } \
  *( (datatype *) buf_ptr ) = (datatype)(value);

/******************** CONVENIENCE DEFS:END ********************/


#define conv_in_text_conventional(py_input, sqlvar, data_type) \
  _conv_in_text( \
      FALSE, /* This is not an array element. */ \
      py_input, \
      /* For non-array-element conversion: */ \
      sqlvar, data_type, \
      /* For array-element conversion; irrelevant here: */ \
      NULL, -1, '\0' \
    )

#define conv_in_text_array(data_slot, size_of_single_element, pad_char) \
  _conv_in_text( \
      TRUE, /* This is an array element. */ \
      py_input, \
      /* For non-array-element conversion: */ \
      NULL, -1, \
      /* For array-element conversion; irrelevant here: */ \
      data_slot, size_of_single_element, pad_char \
    )


/* The _conv_in_text function should not be called except via the
** conv_in_text_(conventional|array) macros defined above. */
static int _conv_in_text(
    /* Common: */
    boolean is_array_element,
    PyObject *py_input,
    /* For non-array-element conversion: */
    XSQLVAR *sqlvar, short data_type,
    /* For array-element conversion: */
    char **data_slot, int defined_field_size, char array_value_pad_char
  )
{
  if ( !PyString_Check(py_input) ) {
    /* 2003.03.15: Finally implemented more informative error message. */
    if (is_array_element || !PYTHON_2_2_OR_LATER) {
      /* Python < 2.2 will always choose this path. */
      raise_exception( InterfaceError,
          "Type mismatch: input parameter must be a string."
        );
    } else {
    #if PYTHON_2_2_OR_LATER
      PyObject *py_input_type = PyObject_Type(py_input);
      PyObject *py_input_type_str = PyObject_Str(py_input_type);
      /* sqlvar->aliasname is not null-terminated. */
      PyObject *field_name = (sqlvar->aliasname_length == 0
          ? PyString_FromString("[name not known at this stage of query execution]")
          : PyString_FromStringAndSize(sqlvar->aliasname, sqlvar->aliasname_length)
        );
      PyObject *err_msg = PyString_FromFormat(
          "Type mismatch: Input parameter for field named %s must be a string,"
          " rather than a %s.",
          PyString_AS_STRING(field_name), PyString_AS_STRING(py_input_type_str)
        );
      Py_DECREF(py_input_type);
      Py_DECREF(py_input_type_str);
      Py_DECREF(field_name);
      /* Hmm... why not a PyExc_TypeError or a ProgrammingError? */
      raise_exception( InterfaceError, PyString_AS_STRING(err_msg) );
      Py_DECREF(err_msg);
    #endif /* PYTHON_2_2_OR_LATER */
    }
    return INPUT_ERROR;
  }

  {
    int size_of_incoming_string = PyString_GET_SIZE(py_input);
    int max_allowed_length = (is_array_element ? defined_field_size : sqlvar->sqllen);

    /* Don't allow truncation; raise an exception if py_input is too long. */
    if ( INPUT_ERROR == _PyObject2XSQLVAR_check_range_SQL_CHARACTER(
            py_input, size_of_incoming_string, max_allowed_length
          )
      )
    {
      return INPUT_ERROR;
    }

    if (!is_array_element) {
      /* This is not an array element; we're free to use sqlvar. */
      assert (sqlvar != NULL);
      assert (data_slot == NULL);

      /* Coerce this sqlvar's type to SQL_TEXT (CHAR) so that we don't have to
      ** allocate a new buffer of size
      **   sizeof(short) + size_of_incoming_string
      ** just to have sizeof(short) extra bytes at the beginning to denote
      ** the length of the incoming value (as we normally would with a
      ** SQL_VARYING). */
      if (data_type != SQL_TEXT) {
        data_type = SQL_TEXT;
        /* Reset the XSQLVAR's type code, retaining its original null flag. */
        sqlvar->sqltype = SQL_TEXT | XSQLVAR_SQLTYPE_READ_NULL_FLAG(sqlvar);
      }

      sqlvar->sqllen = (short) size_of_incoming_string;  /* !MUST! set the
        ** sqllen to prevent the database engine from bulldozing its way out
        ** to the field's defined length and corrupting the value in the
        ** database.
        **   The database engine assumes that an incoming CHAR buffer is sqllen
        ** bytes long (sqllen is initially set to the defined length of the
        ** CHAR field).  The incoming buffer might not be long enough because
        ** we haven't allocated a full-sized buffer for the incoming value.
        ** Instead, we're using the pre-existing, null-terminated buffer
        ** inside the Python string object py_input).
        **   !Note that this XSQLVAR's original settings are later restored
        ** to prevent the database client library from concluding that the
        ** defined maximum length of this field is *really*
        ** size_of_incoming_string, or that this field is *really* a CHAR if
        ** sqltype originally indicated VARCHAR.
        **   In essence, this amounts to API abuse for the sake of a very
        ** significant optimization. */
      sqlvar->sqldata = PyString_AS_STRING(py_input);
    } else {
      /* This is an array element. */
      assert (sqlvar == NULL);
      assert (data_slot != NULL);

      /* Because we don't have an XSQLVAR structure to abuse, we must actually
      ** *copy* the incoming bytes into the array source buffer. */
      memcpy(*data_slot, PyString_AS_STRING(py_input), size_of_incoming_string);
      memset( (*data_slot) + size_of_incoming_string, array_value_pad_char,
          defined_field_size - size_of_incoming_string
        );
    }
  } /* end of namespace-block for size_of_incoming_string. */

  return INPUT_OK;
} /* _conv_in_text */



#define conv_in_internal_integer_types_conventional(py_input, sqlvar, \
    data_type, data_subtype, scale \
  ) \
    _conv_in_internal_integer_types(FALSE, py_input, &(sqlvar->sqldata), \
        data_type, data_subtype, scale, \
        sqlvar \
      )


#define conv_in_internal_integer_types_array(py_input, data_slot, \
    data_type, data_subtype, scale \
  ) \
    _conv_in_internal_integer_types(TRUE, py_input, data_slot, \
        data_type, data_subtype, scale, \
        NULL \
      )

/* The _conv_in_internal_integer_types function should not be called except
** via the _conv_in_internal_integer_types_(conventional|array) macros defined
** above. */
static int _conv_in_internal_integer_types(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    short data_type, short data_subtype,
    short scale,
    XSQLVAR *sqlvar
  )
{
  PyObject *minN, *maxN;
  boolean isSQLShort = (data_type == SQL_SHORT);
  boolean isSQLLong = (data_type == SQL_LONG);
  boolean isPyInt = PyInt_Check(py_input);
  boolean isPyLong = PyLong_Check(py_input);

  if (is_array_element) { assert (sqlvar == NULL); }

  if ( !(isPyInt || isPyLong) ) {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }

    /* Raise a more informative error message.
    ** --But only on Python 2.2 or later.  Of course, this could be done with
    ** C string operations rather than PyString_FromFormat on earlier Python
    ** versions, but why spend the extra effort in support of Luddites? */
    #if PYTHON_2_2_OR_LATER
    {
      PyObject *py_input_type = PyObject_Type(py_input);
      PyObject *py_input_type_repr = PyObject_Repr(py_input_type);
      PyObject *py_input_repr = PyObject_Repr(py_input);
      PyObject *buffer = PyString_FromFormat(
          "Type mismatch while attempting to convert object of type %s"
          " to database-internal numeric type for storage%s."
          "  The object in question is: %s",
          PyString_AsString(py_input_type_repr),
          (is_array_element ? " in array element" : ""),
          PyString_AsString(py_input_repr)
        );

      raise_exception( InterfaceError, PyString_AsString(buffer) );

      Py_DECREF(py_input_type);
      Py_DECREF(py_input_type_repr);
      Py_DECREF(buffer);
    }
    #else /* not PYTHON_2_2_OR_LATER */
      raise_exception( InterfaceError,
          "Type mismatch while attempting to convert object to"
          " database-internal integer type for storage."
        );
    #endif /* PYTHON_2_2_OR_LATER */

    return INPUT_ERROR;
  } /* End of block that ensures that py_input is of an appropriate type. */

  /* The next step is to ensure that the scaled value is not too large for
  ** storage in its internal format.  If it is not too large, we will finally
  ** transfer the value from its Pythonic representation to the data_slot. */
  if (isSQLShort) {
    minN = SHRT_MIN_As_PyObject;
    maxN = SHRT_MAX_As_PyObject;
  } else if (isSQLLong) {
    /* 2004.04.16:64BC: On x86_64/1.5.1pre1, a SQL_LONG is actually stored as
    ** an int, not a long. */
    minN = INT_MIN_As_PyObject;
    maxN = INT_MAX_As_PyObject;
#ifdef INTERBASE6_OR_LATER
  } else { /* data_type must be SQL_INT64 */
    minN = LONG_LONG_MIN_As_PyObject;
    maxN = LONG_LONG_MAX_As_PyObject;
#endif /* INTERBASE6_OR_LATER */
  }

  if ( INPUT_ERROR ==
        _PyObject2XSQLVAR_check_range_SQL_INTEGER(
          data_type, data_subtype, scale,
          py_input, minN, maxN
        )
     )
  {
    return INPUT_ERROR;
  }

  if (isSQLShort) {
    if (isPyInt) {
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, short, (short) PyInt_AS_LONG(py_input));
    } else { /* Must be PyLong */
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, short, (short) PyLong_AsLong(py_input));
    }
  } else if (isSQLLong) {
    if (isPyInt) {
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, long, PyInt_AS_LONG(py_input));
    } else { /* Must be PyLong */
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, long, PyLong_AsLong(py_input));
    }
 #ifdef INTERBASE6_OR_LATER
  } else { /* data_type must be SQL_INT64 */
    if (isPyInt) {
      /* There is no PyInt_AsLongLong because a PyInt's value is stored
      ** internally as a C long. */
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, LONG_LONG, PyInt_AS_LONG(py_input));
    } else { /* Must be PyLong */
      ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, LONG_LONG, PyLong_AsLongLong(py_input));
    }
 #endif /* INTERBASE6_OR_LATER */
  }

  return INPUT_OK;
} /* _conv_in_internal_integer_types */


#define conv_in_float_conventional(py_input, sqlvar) \
  _conv_in_float(FALSE, py_input, &(sqlvar->sqldata), sqlvar)

#define conv_in_float_array(py_input, data_slot) \
  _conv_in_float(TRUE, py_input, data_slot, NULL)

/* The _conv_in_float function should not be called except via the
** conv_in_float_(conventional|array) macros defined above. */
static int _conv_in_float(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    XSQLVAR *sqlvar
  )
{
  if (is_array_element) {
    assert (sqlvar == NULL);
  }

  if ( PyFloat_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, float, PyFloat_AsDouble(py_input));
  } else if ( PyInt_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, float, PyInt_AsLong(py_input));
  } else if ( PyLong_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, float, PyLong_AsLong(py_input));
  } else {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }
    /* YYY:raise more informative error msg: */
    raise_exception( InterfaceError,
        "Type mismatch: "
        "PyFloat_Check/PyInt_Check/PyLong_Check and SQL_FLOAT"
      );
    return INPUT_ERROR;
  }

  return INPUT_OK;
} /* _conv_in_float */


#define conv_in_double_conventional(py_input, sqlvar) \
  _conv_in_double(FALSE, py_input, &(sqlvar->sqldata), sqlvar)

#define conv_in_double_array(py_input, data_slot) \
  _conv_in_double(TRUE, py_input, data_slot, NULL)

/* The _conv_in_double function should not be called except via the
** conv_in_double_(conventional|array) macros defined above. */
static int _conv_in_double(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    XSQLVAR *sqlvar
  )
{
  if (is_array_element) {
    assert (sqlvar == NULL);
  }

  if ( PyFloat_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, double, PyFloat_AsDouble(py_input));
  } else if ( PyInt_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, double, PyInt_AsLong(py_input));
  } else if ( PyLong_Check(py_input) ) {
    ALLOC_IF_NOT_ARRAY_THEN_SET(*data_slot, double, PyLong_AsLong(py_input));
  } else {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }
    raise_exception( InterfaceError,
         "Type mismatch: "
         "PyFloat_Check/PyLong_Check/PyInt_Check and SQL_D_FLOAT/SQL_DOUBLE"
       );
    return INPUT_ERROR;
  }

  return INPUT_OK;
} /* _conv_in_double */


/* Date/time types: */

static void raise_datetime_input_error(PyObject *py_input,
    const char *sql_type_name, const char *required_tuple_length
  )
{
  PyObject *py_input_type = PyObject_Type(py_input);
  PyObject *py_input_type_str = PyObject_Str(py_input_type);
  if (py_input_type_str == NULL) {
    PyErr_NoMemory();
    goto RAISE_DATETIME_INPUT_ERROR_CLEANUP;
  }{
  size_t py_input_type_str_len = PyString_GET_SIZE(py_input_type_str);

  const char *base_msg = "Type mismatch: For a %s field, you must supply a"
    " %s-sequence of integers, not a %s.";
  const size_t base_msg_len = strlen(base_msg);

  char *err_msg_buf = (char *) kimem_main_malloc( sizeof(char) * (
      base_msg_len
        + strlen(sql_type_name) + strlen(required_tuple_length)
          + py_input_type_str_len
            + 1
    ));
  if (err_msg_buf == NULL) {
    PyErr_NoMemory();
    goto RAISE_DATETIME_INPUT_ERROR_CLEANUP;
  }

  sprintf(err_msg_buf, base_msg,
      sql_type_name, required_tuple_length, PyString_AS_STRING(py_input_type_str)
    );

  raise_exception(InterfaceError, err_msg_buf);

 RAISE_DATETIME_INPUT_ERROR_CLEANUP:
  Py_XDECREF(py_input_type);
  Py_XDECREF(py_input_type_str);
  /* raise_exception makes a *copy* of the error message buffer that it
  ** receives, so it's our responsibility to free the buffer we
  ** allocated locally. */
  kimem_main_free(err_msg_buf);
  }
} /* raise_datetime_input_error */


#define _DATETIME_INPUT_EL(index, ERROR_LABEL) \
  el = PySequence_Fast_GET_ITEM(py_input_as_tuple, index); /* borrowed ref */ \
  if (!PyInt_Check(el)) { \
    goto ERROR_LABEL; \
  }

#define conv_in_timestamp_conventional(py_input, sqlvar) \
  _conv_in_timestamp(FALSE, py_input, &(sqlvar->sqldata), sqlvar)

#define conv_in_timestamp_array(py_input, data_slot) \
  _conv_in_timestamp(TRUE, py_input, data_slot, NULL)

/* The _conv_in_timestamp function should not be called except via the
** conv_in_timestamp_(conventional|array) macros defined above. */
static int _conv_in_timestamp(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    XSQLVAR *sqlvar
  )
{
  struct tm c_tm;

  if (is_array_element) { assert (sqlvar == NULL); }

  /* If py_input is a string, or is a non-sequence, then it's an invalid
  ** input value--unless the string happens to be a valid TIMESTAMP literal. */
  if ( PyString_Check(py_input) || !PySequence_Check(py_input) ) {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }
    raise_datetime_input_error(py_input, "TIMESTAMP", "6");
    return INPUT_ERROR;
  } else {
    int extraction_status = INPUT_ERROR; /* Guilty until proven innocent. */
    PyObject *el = NULL;
    /* We already know that py_input is a sequence, so there's no need to pass
    ** an error message to PySequence_Fast. */
    PyObject *py_input_as_tuple = PySequence_Fast(py_input, "");

    if (py_input_as_tuple == NULL) {
      PyErr_NoMemory();
      goto _CONV_IN_TIMESTAMP_EXTRACTION_ERROR;
    }
    if (PySequence_Fast_GET_SIZE(py_input_as_tuple) != 6) {
      raise_datetime_input_error(py_input, "TIMESTAMP", "6");
      goto _CONV_IN_TIMESTAMP_EXTRACTION_ERROR;
    }

    #define _TIMESTAMP_INPUT_EL(index) \
      _DATETIME_INPUT_EL(index, _CONV_IN_TIMESTAMP_EXTRACTION_ERROR)

    _TIMESTAMP_INPUT_EL(0); c_tm.tm_year = PyInt_AS_LONG(el) - 1900;
    _TIMESTAMP_INPUT_EL(1); c_tm.tm_mon = PyInt_AS_LONG(el) - 1;
    _TIMESTAMP_INPUT_EL(2); c_tm.tm_mday = PyInt_AS_LONG(el);
    _TIMESTAMP_INPUT_EL(3); c_tm.tm_hour = PyInt_AS_LONG(el);
    _TIMESTAMP_INPUT_EL(4); c_tm.tm_min = PyInt_AS_LONG(el);
    _TIMESTAMP_INPUT_EL(5); c_tm.tm_sec = PyInt_AS_LONG(el);

    extraction_status = INPUT_OK;
    goto __CONV_IN_TIMESTAMP_EXTRACTION_FINISHED;
    _CONV_IN_TIMESTAMP_EXTRACTION_ERROR:
      assert (extraction_status == INPUT_ERROR);
    __CONV_IN_TIMESTAMP_EXTRACTION_FINISHED:
      Py_XDECREF(py_input_as_tuple);
      if (extraction_status == INPUT_ERROR) { return extraction_status; }
  }

  if (!is_array_element) {
    *data_slot = (char *) kimem_main_malloc(sizeof(ISC_TIMESTAMP));
    if (*data_slot == NULL) {
      return INPUT_ERROR;
    }
  }

  ENTER_DB
  isc_encode_timestamp( &c_tm, (ISC_TIMESTAMP *) *data_slot );
  LEAVE_DB

  return INPUT_OK;
} /* _conv_in_timestamp */


#ifdef INTERBASE6_OR_LATER


#define conv_in_date_conventional(py_input, sqlvar) \
  _conv_in_date(FALSE, py_input, &(sqlvar->sqldata), sqlvar)

#define conv_in_date_array(py_input, data_slot) \
  _conv_in_date(TRUE, py_input, data_slot, NULL)

/* The _conv_in_date function should not be called except via the
** conv_in_date_(conventional|array) macros defined above. */
static int _conv_in_date(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    XSQLVAR *sqlvar
  )
{
  struct tm c_tm;

  if (is_array_element) { assert (sqlvar == NULL); }

  /* If py_input is a string, or is a non-sequence, then it's an invalid
  ** input value--unless the string happens to be a valid DATE literal. */
  if ( PyString_Check(py_input) || !PySequence_Check(py_input) ) {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }
    raise_datetime_input_error(py_input, "DATE", "3");
    return INPUT_ERROR;
  } else {
    int extraction_status = INPUT_ERROR; /* Guilty until proven innocent. */
    PyObject *el = NULL;
    /* We already know that py_input is a sequence, so there's no need to pass
    ** an error message to PySequence_Fast. */
    PyObject *py_input_as_tuple = PySequence_Fast(py_input, "");
    if (py_input_as_tuple == NULL) {
      PyErr_NoMemory();
      goto _CONV_IN_DATE_EXTRACTION_ERROR;
    }
    if (PySequence_Fast_GET_SIZE(py_input_as_tuple) != 3) {
      raise_datetime_input_error(py_input, "DATE", "3");
      goto _CONV_IN_DATE_EXTRACTION_ERROR;
    }

    #define _DATE_INPUT_EL(index) \
      _DATETIME_INPUT_EL(index, _CONV_IN_DATE_EXTRACTION_ERROR)

    _DATE_INPUT_EL(0); c_tm.tm_year = PyInt_AS_LONG(el) - 1900;
    _DATE_INPUT_EL(1); c_tm.tm_mon = PyInt_AS_LONG(el) - 1;
    _DATE_INPUT_EL(2); c_tm.tm_mday = PyInt_AS_LONG(el);

    extraction_status = INPUT_OK;
    goto __CONV_IN_DATE_EXTRACTION_FINISHED;
    _CONV_IN_DATE_EXTRACTION_ERROR:
      assert (extraction_status == INPUT_ERROR);
    __CONV_IN_DATE_EXTRACTION_FINISHED:
      Py_XDECREF(py_input_as_tuple);
      if (extraction_status == INPUT_ERROR) { return extraction_status; }
  }

  if (!is_array_element) {
    *data_slot = (char *) kimem_main_malloc(sizeof(ISC_DATE));
    if (*data_slot == NULL) {
      return INPUT_ERROR;
    }
  }

  ENTER_DB
  isc_encode_sql_date( &c_tm, (ISC_DATE *) *data_slot );
  LEAVE_DB

  return INPUT_OK;
} /* _conv_in_date */


#define conv_in_time_conventional(py_input, sqlvar) \
  _conv_in_time(FALSE, py_input, &(sqlvar->sqldata), sqlvar)

#define conv_in_time_array(py_input, data_slot) \
  _conv_in_time(TRUE, py_input, data_slot, NULL)

/* The _conv_in_time function should not be called except via the
** conv_in_time_(conventional|array) macros defined above. */
static int _conv_in_time(
    boolean is_array_element, PyObject *py_input, char **data_slot,
    XSQLVAR *sqlvar
  )
{
  struct tm c_tm;

  if (is_array_element) { assert (sqlvar == NULL); }

  /* If py_input is a string, or is a non-sequence, then it's an invalid
  ** input value--unless the string happens to be a valid TIME literal. */
  if ( PyString_Check(py_input) || !PySequence_Check(py_input) ) {
    if (!is_array_element) {
      TRY_TO_ACCEPT_STRING_AND_CONVERT(py_input, sqlvar);
    }
    raise_datetime_input_error(py_input, "TIME", "3");
    return INPUT_ERROR;
  } else {
    int extraction_status = INPUT_ERROR; /* Guilty until proven innocent. */
    PyObject *el = NULL;
    /* We already know that py_input is a sequence, so there's no need to pass
    ** an error message to PySequence_Fast. */
    PyObject *py_input_as_tuple = PySequence_Fast(py_input, "");
    if (py_input_as_tuple == NULL) {
      PyErr_NoMemory();
      goto _CONV_IN_TIME_EXTRACTION_ERROR;
    }
    if (PySequence_Fast_GET_SIZE(py_input_as_tuple) != 3) {
      raise_datetime_input_error(py_input, "DATE", "3");
      goto _CONV_IN_TIME_EXTRACTION_ERROR;
    }

    #define _TIME_INPUT_EL(index) \
      _DATETIME_INPUT_EL(index, _CONV_IN_TIME_EXTRACTION_ERROR)

    _TIME_INPUT_EL(0); c_tm.tm_hour = PyInt_AS_LONG(el);
    _TIME_INPUT_EL(1); c_tm.tm_min = PyInt_AS_LONG(el);
    _TIME_INPUT_EL(2); c_tm.tm_sec = PyInt_AS_LONG(el);

    extraction_status = INPUT_OK;
    goto __CONV_IN_TIME_EXTRACTION_FINISHED;
    _CONV_IN_TIME_EXTRACTION_ERROR:
      assert (extraction_status == INPUT_ERROR);
    __CONV_IN_TIME_EXTRACTION_FINISHED:
      Py_XDECREF(py_input_as_tuple);
      if (extraction_status == INPUT_ERROR) { return extraction_status; }
  }

  if (!is_array_element) {
    *data_slot = (char *) kimem_main_malloc(sizeof(ISC_TIME));
    if (*data_slot == NULL) {
      return INPUT_ERROR;
    }
  }

  ENTER_DB
  isc_encode_sql_time( &c_tm, (ISC_TIME *) *data_slot );
  LEAVE_DB

  return INPUT_OK;
} /* _conv_in_time */

#endif /* INTERBASE6_OR_LATER */


static int conv_in_blob(
    CursorObject *cursor, XSQLVAR *sqlvar, PyObject *py_input
  )
{
  /* It would be cute to check for overflow here, but in reality it is not
  ** necessary.  Interbase blobs have a theoretical maximum size of 34359738368
  ** bytes (32GB), which far exceeds the theoretical limit of a Python buffer
  ** or string (INT_MAX, 2147483647 bytes on a typical 32-bit platform).
  ** The Python programmer simply could not create a single value large enough
  ** to overflow an Interbase blob (not even by implementing a custom sequence
  ** class that represents the composition of several buffers, since the
  ** Python C API function PySequence_Size returns an int). */
  ISC_STATUS *status_vector = cursor->status_vector;
  isc_db_handle db_handle = cursor->connection->db_handle;
  isc_tr_handle trans_handle = CON_GET_TRANS_HANDLE(cursor->connection); /* 2003.10.15a:OK */

  /* Next statement allocates space for the blob's id, not for the blob's
  ** contents (the contents are read in segment-at-a-time in the
  ** conv_in_blob_from_pystring function). */
  /* 2003.07.22: bug fix:  Should have allocated sizeof(ISC_QUAD) bytes, not
  ** sizeof(ISC_QUAD *), because isc_create_blob2 will be writing into
  ** sqlvar->sqldata a blob id, not a pointer to a blob id. */
  sqlvar->sqldata = kimem_main_malloc( sizeof(ISC_QUAD) );

  if ( PyString_Check(py_input) ) {
    /* conv_in_blob_from_pystring will raise an exception if necessary; we'll
    ** just pass its return value upward. */
    return
      conv_in_blob_from_pystring ( py_input, (ISC_QUAD *) sqlvar->sqldata,
          status_vector, db_handle, trans_handle
        );
  } else if ( PyBuffer_Check(py_input) ) {
    /* conv_in_blob_from_pybuffer will raise an exception if necessary; we'll
    ** just pass its return value upward. */
    return
      conv_in_blob_from_pybuffer ( py_input, (ISC_QUAD *)(sqlvar->sqldata),
          status_vector, db_handle, trans_handle
        );
  } else {
    raise_exception( InterfaceError,
        "Type mismatch:  blob field requires string or buffer as input"
      );
    return INPUT_ERROR;
  }

  return INPUT_OK;
} /* conv_in_blob */


/******************** UTILITY FUNCTIONS:BEGIN ********************/

static int _try_to_accept_string_and_convert(PyObject *o, XSQLVAR *sqlvar) {
  if ( !PyString_Check(o) ) {
    return INPUT_ERROR;
  }

  /* Reset the XSQLVAR's type code, retaining its original null flag. */
  sqlvar->sqltype = SQL_TEXT | XSQLVAR_SQLTYPE_READ_NULL_FLAG(sqlvar);

  sqlvar->sqllen = PyString_GET_SIZE(o);
  /* Refer to the existing buffer inside o; do not allocate new memory. */
  sqlvar->sqldata = PyString_AS_STRING(o);

  return INPUT_OK;
} /* _try_to_accept_string_and_convert */


static int _PyObject2XSQLVAR_check_range_SQL_CHARACTER(
    PyObject *s,
    int actualLength,
    int maxLength
  )
{
  if (actualLength > maxLength) {
    PyObject *messageFormat = PyString_FromString(
        "string overflow: value %d bytes long cannot fit in character"
        " field of maximum length %d (value is '%s')."
      );
    PyObject *messageArgs = Py_BuildValue( "(iiO)", actualLength, maxLength, s );
    PyObject *errorMessage = PyString_Format(messageFormat, messageArgs);

    raise_exception_with_numeric_error_code( ProgrammingError,
        -802, /* -802 is the IB error code for an overflow */
        PyString_AsString(errorMessage)
      );

    Py_DECREF(messageFormat);
    Py_DECREF(messageArgs);
    Py_DECREF(errorMessage);

    return INPUT_ERROR;
  }

  return INPUT_OK;
} /* _PyObject2XSQLVAR_check_range_SQL_CHARACTER */


static int _PyObject2XSQLVAR_check_range_SQL_INTEGER(
    short data_type, short data_subtype, short scale,
    PyObject *n, PyObject *min, PyObject *max
  )
{
  if ( PyObject_Compare(n, min) < 0 || PyObject_Compare(n, max) > 0 ) {
    const char *externalDataTypeName = get_external_data_type_name(
        data_type, data_subtype, scale
      );
    const char *internalDataTypeName = get_internal_data_type_name(data_type);

    PyObject *messageFormat = PyString_FromString(
        "numeric overflow: value %d (%s scaled for %d decimal places) is of"
        " too great a magnitude to fit into its internal storage type %s,"
        " which has range [%d, %d]."
      );
    PyObject *messageArgs = Py_BuildValue("(OsisOO)",
        n, externalDataTypeName, abs(scale), internalDataTypeName, min, max
      );
    PyObject *errorMessage = PyString_Format(messageFormat, messageArgs);

    raise_exception_with_numeric_error_code( ProgrammingError,
        -802, /* -802 is the IB error code for an overflow */
        PyString_AsString(errorMessage)
      );

    Py_DECREF(messageFormat);
    Py_DECREF(messageArgs);
    Py_DECREF(errorMessage);

    return INPUT_ERROR;
  }

  return INPUT_OK;
} /* _PyObject2XSQLVAR_check_range_SQL_INTEGER */


/******************** UTILITY FUNCTIONS:END ********************/