1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
# coding: utf-8
"""
Kubernetes
No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501
The version of the OpenAPI document: release-1.30
Generated by: https://openapi-generator.tech
"""
import pprint
import re # noqa: F401
import six
from kubernetes.client.configuration import Configuration
class V1alpha2PodSchedulingContextSpec(object):
"""NOTE: This class is auto generated by OpenAPI Generator.
Ref: https://openapi-generator.tech
Do not edit the class manually.
"""
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'potential_nodes': 'list[str]',
'selected_node': 'str'
}
attribute_map = {
'potential_nodes': 'potentialNodes',
'selected_node': 'selectedNode'
}
def __init__(self, potential_nodes=None, selected_node=None, local_vars_configuration=None): # noqa: E501
"""V1alpha2PodSchedulingContextSpec - a model defined in OpenAPI""" # noqa: E501
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._potential_nodes = None
self._selected_node = None
self.discriminator = None
if potential_nodes is not None:
self.potential_nodes = potential_nodes
if selected_node is not None:
self.selected_node = selected_node
@property
def potential_nodes(self):
"""Gets the potential_nodes of this V1alpha2PodSchedulingContextSpec. # noqa: E501
PotentialNodes lists nodes where the Pod might be able to run. The size of this field is limited to 128. This is large enough for many clusters. Larger clusters may need more attempts to find a node that suits all pending resources. This may get increased in the future, but not reduced. # noqa: E501
:return: The potential_nodes of this V1alpha2PodSchedulingContextSpec. # noqa: E501
:rtype: list[str]
"""
return self._potential_nodes
@potential_nodes.setter
def potential_nodes(self, potential_nodes):
"""Sets the potential_nodes of this V1alpha2PodSchedulingContextSpec.
PotentialNodes lists nodes where the Pod might be able to run. The size of this field is limited to 128. This is large enough for many clusters. Larger clusters may need more attempts to find a node that suits all pending resources. This may get increased in the future, but not reduced. # noqa: E501
:param potential_nodes: The potential_nodes of this V1alpha2PodSchedulingContextSpec. # noqa: E501
:type: list[str]
"""
self._potential_nodes = potential_nodes
@property
def selected_node(self):
"""Gets the selected_node of this V1alpha2PodSchedulingContextSpec. # noqa: E501
SelectedNode is the node for which allocation of ResourceClaims that are referenced by the Pod and that use \"WaitForFirstConsumer\" allocation is to be attempted. # noqa: E501
:return: The selected_node of this V1alpha2PodSchedulingContextSpec. # noqa: E501
:rtype: str
"""
return self._selected_node
@selected_node.setter
def selected_node(self, selected_node):
"""Sets the selected_node of this V1alpha2PodSchedulingContextSpec.
SelectedNode is the node for which allocation of ResourceClaims that are referenced by the Pod and that use \"WaitForFirstConsumer\" allocation is to be attempted. # noqa: E501
:param selected_node: The selected_node of this V1alpha2PodSchedulingContextSpec. # noqa: E501
:type: str
"""
self._selected_node = selected_node
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, V1alpha2PodSchedulingContextSpec):
return False
return self.to_dict() == other.to_dict()
def __ne__(self, other):
"""Returns true if both objects are not equal"""
if not isinstance(other, V1alpha2PodSchedulingContextSpec):
return True
return self.to_dict() != other.to_dict()
|