1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
import numpy as np
from bisect import bisect_left
# import logging
from ._lapjv import _lapmod, FP_DYNAMIC_ as FP_DYNAMIC, LARGE_ as LARGE
def _pycrrt(n, cc, ii, kk, free_rows, x, y, v):
# log = logging.getLogger('do_column_reduction_and_reduction_transfer')
x[:] = -1
y[:] = -1
v[:] = LARGE
for i in range(n):
ks = slice(ii[i], ii[i+1])
js = kk[ks]
ccs = cc[ks]
mask = ccs < v[js]
js = js[mask]
v[js] = ccs[mask]
y[js] = i
# log.debug('v = %s', v)
# for j in range(cost.shape[1]):
unique = np.empty((n,), dtype=bool)
unique[:] = True
for j in range(n-1, -1, -1):
i = y[j]
# If row is not taken yet, initialize it with the minimum stored in y.
if x[i] < 0:
x[i] = j
else:
unique[i] = False
y[j] = -1
# log.debug('bw %s %s %s %s', i, j, x, y)
# log.debug('unique %s', unique)
n_free_rows = 0
for i in range(n):
# Store unassigned row i.
if x[i] < 0:
free_rows[n_free_rows] = i
n_free_rows += 1
elif unique[i] and ii[i+1] - ii[i] > 1:
# >1 check prevents choking on rows with a single entry
# Transfer from an assigned row.
j = x[i]
# Find the current 2nd minimum of the reduced column costs:
# (cost[i,j] - v[j]) for some j.
ks = slice(ii[i], ii[i+1])
js = kk[ks]
minv = np.min(cc[ks][js != j] - v[js][js != j])
# log.debug("v[%d] = %f - %f", j, v[j], minv)
v[j] -= minv
# log.debug('free: %s', free_rows[:n_free_rows])
# log.debug('%s %s', x, v)
return n_free_rows
def find_minima(indices, values):
if len(indices) > 0:
j1 = indices[0]
v1 = values[0]
else:
j1 = 0
v1 = LARGE
j2 = -1
v2 = LARGE
# log = logging.getLogger('find_minima')
# log.debug(sorted(zip(values, indices))[:2])
for j, h in zip(indices[1:], values[1:]):
# log.debug('%d = %f %d = %f', j1, v1, j2, v2)
if h < v2:
if h >= v1:
v2 = h
j2 = j
else:
v2 = v1
v1 = h
j2 = j1
j1 = j
# log.debug('%d = %f %d = %f', j1, v1, j2, v2)
return j1, v1, j2, v2
def _pyarr(n, cc, ii, kk, n_free_rows, free_rows, x, y, v):
# log = logging.getLogger('do_augmenting_row_reduction')
# log.debug('%s %s %s', x, y, v)
current = 0
# log.debug('free: %s', free_rows[:n_free_rows])
new_free_rows = 0
while current < n_free_rows:
free_i = free_rows[current]
# log.debug('current = %d', current)
current += 1
ks = slice(ii[free_i], ii[free_i+1])
js = kk[ks]
j1, v1, j2, v2 = find_minima(js, cc[ks] - v[js])
i0 = y[j1]
v1_new = v[j1] - (v2 - v1)
v1_lowers = v1_new < v[j1]
# log.debug(
# '%d %d 1=%s,%f 2=%s,%f %f %s',
# free_i, i0, j1, v1, j2, v2, v1_new, v1_lowers)
if v1_lowers:
v[j1] = v1_new
elif i0 >= 0 and j2 != -1: # i0 is assigned, try j2
j1 = j2
i0 = y[j2]
x[free_i] = j1
y[j1] = free_i
if i0 >= 0:
if v1_lowers:
current -= 1
# log.debug('continue augmenting path from current %s %s %s')
free_rows[current] = i0
else:
# log.debug('stop the augmenting path and keep for later')
free_rows[new_free_rows] = i0
new_free_rows += 1
# log.debug('free: %s', free_rows[:new_free_rows])
return new_free_rows
def binary_search(data, key):
# log = logging.getLogger('binary_search')
i = bisect_left(data, key)
# log.debug('Found data[%d]=%d for %d', i, data[i], key)
if i < len(data) and data[i] == key:
return i
else:
return None
def _find(hi, d, cols, y):
lo, hi = hi, hi + 1
minv = d[cols[lo]]
# XXX: anytime this happens to be NaN, i'm screwed...
# assert not np.isnan(minv)
for k in range(hi, len(cols)):
j = cols[k]
if d[j] <= minv:
# New minimum found, trash the new SCAN columns found so far.
if d[j] < minv:
hi = lo
minv = d[j]
cols[k], cols[hi] = cols[hi], j
hi += 1
return minv, hi, cols
def _scan(n, cc, ii, kk, minv, lo, hi, d, cols, pred, y, v):
# log = logging.getLogger('_scan')
# Scan all TODO columns.
while lo != hi:
j = cols[lo]
lo += 1
i = y[j]
# log.debug('?%d kk[%d:%d]=%s', j, ii[i], ii[i+1], kk[ii[i]:ii[i+1]])
kj = binary_search(kk[ii[i]:ii[i+1]], j)
if kj is None:
continue
kj = ii[i] + kj
h = cc[kj] - v[j] - minv
# log.debug('i=%d j=%d kj=%s h=%f', i, j, kj, h)
for k in range(hi, n):
j = cols[k]
kj = binary_search(kk[ii[i]:ii[i+1]], j)
if kj is None:
continue
kj = ii[i] + kj
cred_ij = cc[kj] - v[j] - h
if cred_ij < d[j]:
d[j] = cred_ij
pred[j] = i
if cred_ij == minv:
if y[j] < 0:
return j, None, None, d, cols, pred
cols[k] = cols[hi]
cols[hi] = j
hi += 1
return -1, lo, hi, d, cols, pred
def find_path(n, cc, ii, kk, start_i, y, v):
# log = logging.getLogger('find_path')
cols = np.arange(n, dtype=int)
pred = np.empty((n,), dtype=int)
pred[:] = start_i
d = np.empty((n,), dtype=float)
d[:] = LARGE
ks = slice(ii[start_i], ii[start_i+1])
js = kk[ks]
d[js] = cc[ks] - v[js]
# log.debug('d = %s', d)
minv = LARGE
lo, hi = 0, 0
n_ready = 0
final_j = -1
while final_j == -1:
# No SCAN columns, find new ones.
if lo == hi:
# log.debug('%d..%d -> find', lo, hi)
# log.debug('cols = %s', cols)
n_ready = lo
minv, hi, cols = _find(hi, d, cols, y)
# log.debug('%d..%d -> check', lo, hi)
# log.debug('cols = %s', cols)
# log.debug('y = %s', y)
for h in range(lo, hi):
# If any of the new SCAN columns is unassigned, use it.
if y[cols[h]] < 0:
final_j = cols[h]
if final_j == -1:
# log.debug('%d..%d -> scan', lo, hi)
final_j, lo, hi, d, cols, pred = _scan(
n, cc, ii, kk, minv, lo, hi, d, cols, pred, y, v)
# log.debug('d = %s', d)
# log.debug('cols = %s', cols)
# log.debug('pred = %s', pred)
# Update prices for READY columns.
for k in range(n_ready):
j0 = cols[k]
v[j0] += d[j0] - minv
assert final_j >= 0
assert final_j < n
return final_j, pred
def _pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v):
# log = logging.getLogger('augment')
for free_i in free_rows[:n_free_rows]:
# log.debug('looking at free_i=%s', free_i)
j, pred = find_path(n, cc, ii, kk, free_i, y, v)
# Augment the path starting from column j and backtracking to free_i.
i = -1
while i != free_i:
# log.debug('augment %s', j)
# log.debug('pred = %s', pred)
i = pred[j]
assert i >= 0
assert i < n
# log.debug('y[%d]=%d -> %d', j, y[j], i)
y[j] = i
j, x[i] = x[i], j
def check_cost(n, cc, ii, kk):
if n == 0:
raise ValueError('Cost matrix has zero rows.')
if len(kk) == 0:
raise ValueError('Cost matrix has zero columns.')
lo = cc.min()
hi = cc.max()
if lo < 0:
raise ValueError('Cost matrix values must be non-negative.')
if hi >= LARGE:
raise ValueError(
'Cost matrix values must be less than %s' % LARGE)
def get_cost(n, cc, ii, kk, x0):
ret = 0
for i, j in enumerate(x0):
kj = binary_search(kk[ii[i]:ii[i+1]], j)
if kj is None:
return np.inf
kj = ii[i] + kj
ret += cc[kj]
return ret
def lapmod(n, cc, ii, kk, fast=True, return_cost=True, fp_version=FP_DYNAMIC):
"""Solve sparse linear assignment problem using Jonker-Volgenant algorithm.
n: number of rows of the assignment cost matrix
cc: 1D array of all finite elements of the assignement cost matrix
ii: 1D array of indices of the row starts in cc. The following must hold:
ii[0] = 0 and ii[n+1] = len(cc).
kk: 1D array of the column indices so that:
cost[i, kk[ii[i] + k]] == cc[ii[i] + k].
Indices within one row must be sorted.
extend_cost: whether or not extend a non-square matrix [default: False]
cost_limit: an upper limit for a cost of a single assignment
[default: np.inf]
return_cost: whether or not to return the assignment cost
Returns (opt, x, y) where:
opt: cost of the assignment
x: vector of columns assigned to rows
y: vector of rows assigned to columns
or (x, y) if return_cost is not True.
When extend_cost and/or cost_limit is set, all unmatched entries will be
marked by -1 in x/y.
"""
# log = logging.getLogger('lapmod')
check_cost(n, cc, ii, kk)
if fast is True:
# log.debug('[----CR & RT & ARR & augmentation ----]')
x, y = _lapmod(n, cc, ii, kk, fp_version=fp_version)
else:
cc = np.ascontiguousarray(cc, dtype=np.float64)
ii = np.ascontiguousarray(ii, dtype=np.int32)
kk = np.ascontiguousarray(kk, dtype=np.int32)
x = np.empty((n,), dtype=np.int32)
y = np.empty((n,), dtype=np.int32)
v = np.empty((n,), dtype=np.float64)
free_rows = np.empty((n,), dtype=np.int32)
# log.debug('[----Column reduction & reduction transfer----]')
n_free_rows = _pycrrt(n, cc, ii, kk, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
for it in range(2):
# log.debug('[---Augmenting row reduction (iteration: %d)---]', it)
n_free_rows = _pyarr(
n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Augmenting row reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
# log.info('[----Augmentation----]')
_pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug('x, y, v: %s %s %s', x, y, v)
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
|