File: lapmod.py

package info (click to toggle)
python-lap 0.5.12-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 1,684 kB
  • sloc: python: 1,408; cpp: 872; sh: 17; makefile: 3
file content (340 lines) | stat: -rw-r--r-- 11,325 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
from bisect import bisect_left

# import logging

from ._lapjv import _lapmod, FP_DYNAMIC_ as FP_DYNAMIC, LARGE_ as LARGE


def _pycrrt(n, cc, ii, kk, free_rows, x, y, v):
    # log = logging.getLogger('do_column_reduction_and_reduction_transfer')
    x[:] = -1
    y[:] = -1
    v[:] = LARGE
    for i in range(n):
        ks = slice(ii[i], ii[i+1])
        js = kk[ks]
        ccs = cc[ks]
        mask = ccs < v[js]
        js = js[mask]
        v[js] = ccs[mask]
        y[js] = i
    # log.debug('v = %s', v)
    # for j in range(cost.shape[1]):
    unique = np.empty((n,), dtype=bool)
    unique[:] = True
    for j in range(n-1, -1, -1):
        i = y[j]
        # If row is not taken yet, initialize it with the minimum stored in y.
        if x[i] < 0:
            x[i] = j
        else:
            unique[i] = False
            y[j] = -1
        # log.debug('bw %s %s %s %s', i, j, x, y)
    # log.debug('unique %s', unique)
    n_free_rows = 0
    for i in range(n):
        # Store unassigned row i.
        if x[i] < 0:
            free_rows[n_free_rows] = i
            n_free_rows += 1
        elif unique[i] and ii[i+1] - ii[i] > 1:
            # >1 check prevents choking on rows with a single entry
            # Transfer from an assigned row.
            j = x[i]
            # Find the current 2nd minimum of the reduced column costs:
            # (cost[i,j] - v[j]) for some j.
            ks = slice(ii[i], ii[i+1])
            js = kk[ks]
            minv = np.min(cc[ks][js != j] - v[js][js != j])
            # log.debug("v[%d] = %f - %f", j, v[j], minv)
            v[j] -= minv
    # log.debug('free: %s', free_rows[:n_free_rows])
    # log.debug('%s %s', x, v)
    return n_free_rows


def find_minima(indices, values):
    if len(indices) > 0:
        j1 = indices[0]
        v1 = values[0]
    else:
        j1 = 0
        v1 = LARGE
    j2 = -1
    v2 = LARGE
    # log = logging.getLogger('find_minima')
    # log.debug(sorted(zip(values, indices))[:2])
    for j, h in zip(indices[1:], values[1:]):
        # log.debug('%d = %f %d = %f', j1, v1, j2, v2)
        if h < v2:
            if h >= v1:
                v2 = h
                j2 = j
            else:
                v2 = v1
                v1 = h
                j2 = j1
                j1 = j
    # log.debug('%d = %f %d = %f', j1, v1, j2, v2)
    return j1, v1, j2, v2


def _pyarr(n, cc, ii, kk, n_free_rows, free_rows, x, y, v):
    # log = logging.getLogger('do_augmenting_row_reduction')
    # log.debug('%s %s %s', x, y, v)
    current = 0
    # log.debug('free: %s', free_rows[:n_free_rows])
    new_free_rows = 0
    while current < n_free_rows:
        free_i = free_rows[current]
        # log.debug('current = %d', current)
        current += 1
        ks = slice(ii[free_i], ii[free_i+1])
        js = kk[ks]
        j1, v1, j2, v2 = find_minima(js, cc[ks] - v[js])
        i0 = y[j1]
        v1_new = v[j1] - (v2 - v1)
        v1_lowers = v1_new < v[j1]
        # log.debug(
        #    '%d %d 1=%s,%f 2=%s,%f %f %s',
        #    free_i, i0, j1, v1, j2, v2, v1_new, v1_lowers)
        if v1_lowers:
            v[j1] = v1_new
        elif i0 >= 0 and j2 != -1:  # i0 is assigned, try j2
            j1 = j2
            i0 = y[j2]
        x[free_i] = j1
        y[j1] = free_i
        if i0 >= 0:
            if v1_lowers:
                current -= 1
                # log.debug('continue augmenting path from current %s %s %s')
                free_rows[current] = i0
            else:
                # log.debug('stop the augmenting path and keep for later')
                free_rows[new_free_rows] = i0
                new_free_rows += 1
        # log.debug('free: %s', free_rows[:new_free_rows])
    return new_free_rows


def binary_search(data, key):
    # log = logging.getLogger('binary_search')
    i = bisect_left(data, key)
    # log.debug('Found data[%d]=%d for %d', i, data[i], key)
    if i < len(data) and data[i] == key:
        return i
    else:
        return None


def _find(hi, d, cols, y):
    lo, hi = hi, hi + 1
    minv = d[cols[lo]]
    # XXX: anytime this happens to be NaN, i'm screwed...
    # assert not np.isnan(minv)
    for k in range(hi, len(cols)):
        j = cols[k]
        if d[j] <= minv:
            # New minimum found, trash the new SCAN columns found so far.
            if d[j] < minv:
                hi = lo
                minv = d[j]
            cols[k], cols[hi] = cols[hi], j
            hi += 1
    return minv, hi, cols


def _scan(n, cc, ii, kk, minv, lo, hi, d, cols, pred, y, v):
    # log = logging.getLogger('_scan')
    # Scan all TODO columns.
    while lo != hi:
        j = cols[lo]
        lo += 1
        i = y[j]
        # log.debug('?%d kk[%d:%d]=%s', j, ii[i], ii[i+1], kk[ii[i]:ii[i+1]])
        kj = binary_search(kk[ii[i]:ii[i+1]], j)
        if kj is None:
            continue
        kj = ii[i] + kj
        h = cc[kj] - v[j] - minv
        # log.debug('i=%d j=%d kj=%s h=%f', i, j, kj, h)
        for k in range(hi, n):
            j = cols[k]
            kj = binary_search(kk[ii[i]:ii[i+1]], j)
            if kj is None:
                continue
            kj = ii[i] + kj
            cred_ij = cc[kj] - v[j] - h
            if cred_ij < d[j]:
                d[j] = cred_ij
                pred[j] = i
                if cred_ij == minv:
                    if y[j] < 0:
                        return j, None, None, d, cols, pred
                    cols[k] = cols[hi]
                    cols[hi] = j
                    hi += 1
    return -1, lo, hi, d, cols, pred


def find_path(n, cc, ii, kk, start_i, y, v):
    # log = logging.getLogger('find_path')
    cols = np.arange(n, dtype=int)
    pred = np.empty((n,), dtype=int)
    pred[:] = start_i
    d = np.empty((n,), dtype=float)
    d[:] = LARGE
    ks = slice(ii[start_i], ii[start_i+1])
    js = kk[ks]
    d[js] = cc[ks] - v[js]
    # log.debug('d = %s', d)
    minv = LARGE
    lo, hi = 0, 0
    n_ready = 0
    final_j = -1
    while final_j == -1:
        # No SCAN columns, find new ones.
        if lo == hi:
            # log.debug('%d..%d -> find', lo, hi)
            # log.debug('cols = %s', cols)
            n_ready = lo
            minv, hi, cols = _find(hi, d, cols, y)
            # log.debug('%d..%d -> check', lo, hi)
            # log.debug('cols = %s', cols)
            # log.debug('y = %s', y)
            for h in range(lo, hi):
                # If any of the new SCAN columns is unassigned, use it.
                if y[cols[h]] < 0:
                    final_j = cols[h]
        if final_j == -1:
            # log.debug('%d..%d -> scan', lo, hi)
            final_j, lo, hi, d, cols, pred = _scan(
                    n, cc, ii, kk, minv, lo, hi, d, cols, pred, y, v)
            # log.debug('d = %s', d)
            # log.debug('cols = %s', cols)
            # log.debug('pred = %s', pred)

    # Update prices for READY columns.
    for k in range(n_ready):
        j0 = cols[k]
        v[j0] += d[j0] - minv

    assert final_j >= 0
    assert final_j < n
    return final_j, pred


def _pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v):
    # log = logging.getLogger('augment')
    for free_i in free_rows[:n_free_rows]:
        # log.debug('looking at free_i=%s', free_i)
        j, pred = find_path(n, cc, ii, kk, free_i, y, v)
        # Augment the path starting from column j and backtracking to free_i.
        i = -1
        while i != free_i:
            # log.debug('augment %s', j)
            # log.debug('pred = %s', pred)
            i = pred[j]
            assert i >= 0
            assert i < n
            # log.debug('y[%d]=%d -> %d', j, y[j], i)
            y[j] = i
            j, x[i] = x[i], j


def check_cost(n, cc, ii, kk):
    if n == 0:
        raise ValueError('Cost matrix has zero rows.')
    if len(kk) == 0:
        raise ValueError('Cost matrix has zero columns.')
    lo = cc.min()
    hi = cc.max()
    if lo < 0:
        raise ValueError('Cost matrix values must be non-negative.')
    if hi >= LARGE:
        raise ValueError(
                'Cost matrix values must be less than %s' % LARGE)


def get_cost(n, cc, ii, kk, x0):
    ret = 0
    for i, j in enumerate(x0):
        kj = binary_search(kk[ii[i]:ii[i+1]], j)
        if kj is None:
            return np.inf
        kj = ii[i] + kj
        ret += cc[kj]
    return ret


def lapmod(n, cc, ii, kk, fast=True, return_cost=True, fp_version=FP_DYNAMIC):
    """Solve sparse linear assignment problem using Jonker-Volgenant algorithm.

    n: number of rows of the assignment cost matrix
    cc: 1D array of all finite elements of the assignement cost matrix
    ii: 1D array of indices of the row starts in cc. The following must hold:
            ii[0] = 0 and ii[n+1] = len(cc).
    kk: 1D array of the column indices so that:
            cost[i, kk[ii[i] + k]] == cc[ii[i] + k].
        Indices within one row must be sorted.
    extend_cost: whether or not extend a non-square matrix [default: False]
    cost_limit: an upper limit for a cost of a single assignment
                [default: np.inf]
    return_cost: whether or not to return the assignment cost

    Returns (opt, x, y) where:
      opt: cost of the assignment
      x: vector of columns assigned to rows
      y: vector of rows assigned to columns
    or (x, y) if return_cost is not True.

    When extend_cost and/or cost_limit is set, all unmatched entries will be
    marked by -1 in x/y.
    """
    # log = logging.getLogger('lapmod')

    check_cost(n, cc, ii, kk)

    if fast is True:
        # log.debug('[----CR & RT & ARR & augmentation ----]')
        x, y = _lapmod(n, cc, ii, kk, fp_version=fp_version)
    else:
        cc = np.ascontiguousarray(cc, dtype=np.float64)
        ii = np.ascontiguousarray(ii, dtype=np.int32)
        kk = np.ascontiguousarray(kk, dtype=np.int32)
        x = np.empty((n,), dtype=np.int32)
        y = np.empty((n,), dtype=np.int32)
        v = np.empty((n,), dtype=np.float64)
        free_rows = np.empty((n,), dtype=np.int32)
        # log.debug('[----Column reduction & reduction transfer----]')
        n_free_rows = _pycrrt(n, cc, ii, kk, free_rows, x, y, v)
        # log.debug(
        #     'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
        if n_free_rows == 0:
            # log.info('Reduction solved it.')
            if return_cost is True:
                return get_cost(n, cc, ii, kk, x), x, y
            else:
                return x, y
        for it in range(2):
            # log.debug('[---Augmenting row reduction (iteration: %d)---]', it)
            n_free_rows = _pyarr(
                    n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
            # log.debug(
            #   'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
            if n_free_rows == 0:
                # log.info('Augmenting row reduction solved it.')
                if return_cost is True:
                    return get_cost(n, cc, ii, kk, x), x, y
                else:
                    return x, y
        # log.info('[----Augmentation----]')
        _pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
        # log.debug('x, y, v: %s %s %s', x, y, v)
    if return_cost is True:
        return get_cost(n, cc, ii, kk, x), x, y
    else:
        return x, y