1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
from pytest import mark, fixture, raises
import numpy as np
from lap import lapjv
from .test_utils import (
get_dense_8x8_int,
get_dense_100x100_int, get_dense_100x100_int_hard, get_sparse_100x100_int,
get_dense_1kx1k_int, get_dense_1kx1k_int_hard, get_sparse_1kx1k_int,
get_sparse_4kx4k_int,
get_dense_eps,
get_platform_maxint
)
def test_lapjv_empty():
with raises(ValueError):
lapjv(np.ndarray([]))
def test_lapjv_non_square_fail():
with raises(ValueError):
lapjv(np.zeros((3, 2)))
def test_lapjv_non_contigous():
cost = get_dense_8x8_int()[0]
ret = lapjv(cost[:3, :3])
assert ret[0] == 8.0
assert np.all(ret[1] == [1, 2, 0])
assert np.all(ret[2] == [2, 0, 1])
def test_lapjv_extension():
cost = get_dense_8x8_int()[0]
ret = lapjv(cost[:2, :4], extend_cost=True)
assert ret[0] == 3.0
assert np.all(ret[1] == [1, 2])
assert np.all(ret[2] == [-1, 0, 1, -1])
def test_lapjv_noextension():
cost = get_dense_8x8_int()[0]
c = np.r_[cost[:2, :4],
[[1001, 1001, 1001, 2001], [2001, 1001, 1001, 1001]]]
ret = lapjv(c, extend_cost=False)
assert ret[0] - 2002 == 3.0
assert np.all(ret[1] == [1, 2, 0, 3])
assert np.all(ret[2] == [2, 0, 1, 3])
def test_lapjv_cost_limit():
cost = get_dense_8x8_int()[0]
ret = lapjv(cost[:3, :3], cost_limit=4.99)
assert ret[0] == 3.0
assert np.all(ret[1] == [1, 2, -1])
assert np.all(ret[2] == [-1, 0, 1])
@mark.parametrize('cost,expected', [
(np.array([[1000, 2, 11, 10, 8, 7, 6, 5],
[6, 1000, 1, 8, 8, 4, 6, 7],
[5, 12, 1000, 11, 8, 12, 3, 11],
[11, 9, 10, 1000, 1, 9, 8, 10],
[11, 11, 9, 4, 1000, 2, 10, 9],
[12, 8, 5, 2, 11, 1000, 11, 9],
[10, 11, 12, 10, 9, 12, 1000, 3],
[10, 10, 10, 10, 6, 3, 1, 1000]]),
(17.0, [1, 2, 0, 4, 5, 3, 7, 6], [2, 0, 1, 5, 3, 4, 7, 6])),
# Solved in column reduction.
(np.array([[1000, 4, 1],
[1, 1000, 3],
[5, 1, 1000]]),
(3., [2, 0, 1], [1, 2, 0])),
# Solved in augmenting row reduction.
(np.array([[5, 1000, 3],
[1000, 2, 2],
[1, 5, 1000]]),
(6., [2, 1, 0], [2, 1, 0])),
# Needs augmentating row reduction - only a single row previously assigned.
(np.array([[1000, 1000+1, 1000],
[1000, 1000, 1000+1],
[1, 2, 3]]),
(1000+1000+1., [2, 1, 0], [2, 1, 0])),
# Triggers the trackmate bug
# Solution is ambiguous, [1, 0, 2] gives the same cost, depends on whether
# in column reduction columns are iterated over from largest to smallest or
# the other way around.
(np.array([[10, 10, 13],
[4, 8, 8],
[8, 5, 8]]),
(13+4+5, [2, 0, 1], [1, 2, 0])),
(np.array([[11, 10, 6],
[10, 11, 11],
[11, 12, 15]]),
(6+10+12, [2, 0, 1], [1, 2, 0])),
(np.array([[12, 4, 9],
[16, 15, 14],
[19, 13, 17]]),
(4+16+17, [1, 0, 2], [1, 0, 2])),
(np.array([[2, 5, 7],
[7, 10, 12],
[1, 5, 9]]),
(7+10+1, [2, 1, 0], [2, 1, 0])),
# This triggered error in augmentation.
(np.array([[10, 6, 14, 1],
[17, 18, 17, 15],
[14, 17, 15, 8],
[11, 13, 11, 4]]),
(6+17+14+4, [1, 2, 0, 3], [2, 0, 1, 3])),
# Test matrix from centrosome
(np.array([[10, 10, 13],
[4, 8, 8],
[8, 5, 8]]),
(22., [2, 0, 1], [1, 2, 0])),
# Test matrix from centrosome
(np.array([[2, 5, 7],
[7, 10, 12],
[1, 5, 9]]),
(18., [2, 1, 0], [2, 1, 0])),
])
def test_square(cost, expected):
ret = lapjv(cost)
assert len(ret) == len(expected)
assert cost[range(cost.shape[0]), ret[1]].sum() == ret[0]
assert cost[ret[2], range(cost.shape[1])].sum() == ret[0]
assert ret[0] == expected[0]
assert np.all(ret[1] == expected[1])
assert np.all(ret[2] == expected[2])
@mark.parametrize('cost,expected', [
(np.array([[11., 20., np.inf, np.inf, np.inf],
[12., np.inf, 12., np.inf, np.inf],
[np.inf, 11., 10., 15., 9.],
[15., np.inf, np.inf, 22., np.inf],
[13., np.inf, np.inf, np.inf, 15.]], dtype=float),
(11+12+11+22+15, [0, 2, 1, 3, 4], [0, 2, 1, 3, 4])),
])
def test_sparse_square(cost, expected):
ret = lapjv(cost)
assert len(ret) == len(expected)
assert cost[range(cost.shape[0]), ret[1]].sum() == ret[0]
assert cost[ret[2], range(cost.shape[1])].sum() == ret[0]
assert ret[0] == expected[0]
assert np.all(ret[1] == expected[1])
assert np.all(ret[2] == expected[2])
# This test triggers a possibly infinite loop in ARR.
@mark.timeout(60)
def test_infs_unsolvable():
cost = np.array([[0., 0., 0., np.inf, np.inf],
[np.inf, np.inf, np.inf, 0., 0.],
[np.inf, np.inf, np.inf, 0., 0.],
[np.inf, np.inf, np.inf, 0., 0.],
[0., 0., 0., np.inf, np.inf]], dtype=float)
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == np.inf
cost = np.array([[19., 22., 16., np.inf, np.inf],
[np.inf, np.inf, np.inf, 4., 13.],
[np.inf, np.inf, np.inf, 3., 14.],
[np.inf, np.inf, np.inf, 10., 12.],
[11., 14., 13., np.inf, np.inf]], dtype=float)
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == np.inf
def test_inf_unique():
cost = np.array([[1000, 4, 1],
[1, 1000, 3],
[5, 1, 1000]])
cost_ext = np.empty((4, 4))
cost_ext[:] = np.inf
cost_ext[:3, :3] = cost
cost_ext[3, 3] = 0
ret = lapjv(cost_ext)
assert len(ret) == 3
assert ret[0] == 3.
assert np.all(ret[1] == [2, 0, 1, 3])
@mark.timeout(2)
def test_inf_col():
cost = np.array([[0., np.inf, 0., 0., np.inf],
[np.inf, np.inf, 0., 0., 0.],
[np.inf, np.inf, np.inf, 0., np.inf],
[np.inf, np.inf, np.inf, 0., 0.],
[0., np.inf, 0., np.inf, np.inf]], dtype=float)
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == np.inf
@mark.timeout(2)
def test_inf_row():
cost = np.array([[0., 0., 0., 0., np.inf],
[np.inf, np.inf, 0., 0., 0.],
[np.inf, np.inf, np.inf, np.inf, np.inf],
[np.inf, np.inf, np.inf, 0., 0.],
[0., 0., 0., np.inf, np.inf]], dtype=float)
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == np.inf
def test_all_inf():
cost = np.empty((5, 5), dtype=float)
cost[:] = np.inf
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == np.inf
@fixture
def dense_8x8_int():
return get_dense_8x8_int()
@fixture
def dense_100x100_int():
return get_dense_100x100_int()
@fixture
def dense_100x100_int_hard():
return get_dense_100x100_int_hard()
@fixture
def sparse_100x100_int():
return get_sparse_100x100_int()
@fixture
def dense_1kx1k_int():
return get_dense_1kx1k_int()
@fixture
def dense_1kx1k_int_hard():
return get_dense_1kx1k_int_hard()
@fixture
def sparse_1kx1k_int():
return get_sparse_1kx1k_int()
@fixture
def sparse_4kx4k_int():
return get_sparse_4kx4k_int()
@fixture
def dense_eps():
return get_dense_eps()
@mark.timeout(60)
def test_eps(dense_eps):
cost, opt = dense_eps
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
def test_dense_100x100_int(dense_100x100_int):
cost, opt = dense_100x100_int
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
def test_dense_100x100_int_hard(dense_100x100_int_hard):
cost, opt = dense_100x100_int_hard
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
# TODO: too sparse unsolvable matrices cause sometimne IndexError, easily
# generated - just set the mask threshold low enough
def test_sparse_100x100_int(sparse_100x100_int):
cost, mask, opt = sparse_100x100_int
cost[~mask] = get_platform_maxint()
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
@mark.timeout(60)
def test_dense_1kx1k_int(dense_1kx1k_int):
cost, opt = dense_1kx1k_int
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
@mark.timeout(60)
def test_dense_1kx1k_int_hard(dense_1kx1k_int_hard):
cost, opt = dense_1kx1k_int_hard
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
@mark.timeout(60)
def test_sparse_1kx1k_int(sparse_1kx1k_int):
cost, mask, opt = sparse_1kx1k_int
cost[~mask] = get_platform_maxint()
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
@mark.timeout(60)
def test_sparse_4kx4k_int(sparse_4kx4k_int):
cost, mask, opt = sparse_4kx4k_int
cost[~mask] = get_platform_maxint()
ret = lapjv(cost)
assert len(ret) == 3
assert ret[0] == opt
|