File: test_utils.py

package info (click to toggle)
python-lap 0.5.12-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 1,684 kB
  • sloc: python: 1,408; cpp: 872; sh: 17; makefile: 3
file content (186 lines) | stat: -rw-r--r-- 5,152 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import os
from gzip import GzipFile


def make_hard(cost, lo, hi):
    hard = cost.copy()
    for row in range(hard.shape[0]):
        hard[row, :] += np.random.randint(lo, hi)
    for col in range(hard.shape[1]):
        hard[:, col] += np.random.randint(lo, hi)
    return hard


def get_dense_8x8_int():
    cost = np.array([[1000, 2, 11, 10, 8, 7, 6, 5],
                     [6, 1000, 1, 8, 8, 4, 6, 7],
                     [5, 12, 1000, 11, 8, 12, 3, 11],
                     [11, 9, 10, 1000, 1, 9, 8, 10],
                     [11, 11, 9, 4, 1000, 2, 10, 9],
                     [12, 8, 5, 2, 11, 1000, 11, 9],
                     [10, 11, 12, 10, 9, 12, 1000, 3],
                     [10, 10, 10, 10, 6, 3, 1, 1000]])
    opt = 17.
    return cost, opt


def get_dense_int(sz, rng, hard=True, seed=1299821):
    np.random.seed(seed)
    cost = np.random.randint(1, rng+1, size=(sz, sz))
    if hard is True:
        cost = make_hard(cost, 0, rng)
    return cost


def get_sparse_int(sz, rng, sparsity, hard=True, seed=1299821):
    np.random.seed(seed)
    cost = np.random.randint(1, rng+1, size=(sz, sz))
    if hard is True:
        cost = make_hard(cost, 0, rng)
    mask = np.random.rand(sz, sz)
    thresh = np.percentile(
            mask.flat, max(0, (sparsity - sz/float(sz*sz)) * 100.))
    mask = mask < thresh
    # Make sure there exists a solution.
    row = np.random.permutation(sz)
    col = np.random.permutation(sz)
    mask[row, col] = True
    return cost, mask


def get_nnz_int(sz, nnz, rng=100, seed=1299821):
    np.random.seed(seed)
    cc = np.random.randint(1, rng+1, size=(sz*nnz,))
    ii = np.empty((sz + 1,), dtype=np.int32)
    ii[0] = 0
    ii[1:] = nnz
    ii = np.cumsum(ii)
    kk = np.empty((sz, nnz), dtype=np.int32)
    # Make sure there exists a solution.
    kk[:, 0] = np.random.permutation(sz)
    for row in range(sz):
        p = np.random.permutation(sz)[:nnz]
        if kk[row, 0] in p:
            kk[row, :] = p
        else:
            kk[row, 1:] = p[:-1]
    # Column indices must be sorted within each row.
    kk = np.sort(kk, axis=1).flatten()
    assert len(cc) == sz * nnz
    assert len(kk)
    assert np.all(kk >= 0)
    assert np.all(kk < sz)
    return cc, ii, kk


def get_dense_100x100_int():
    cost = get_dense_int(100, 100, hard=False, seed=1299821)
    opt = 198.
    return cost, opt


def get_dense_100x100_int_hard():
    cost = get_dense_int(100, 100, hard=True, seed=1299821)
    opt = 11399.
    return cost, opt


def get_sparse_100x100_int():
    cost, mask = get_sparse_int(100, 100, 0.04, seed=1299821)
    opt = 11406
    return cost, np.logical_not(mask), opt


def get_dense_1kx1k_int():
    cost = get_dense_int(1000, 100, hard=False, seed=1299821)
    opt = 1000.
    return cost, opt


def get_dense_1kx1k_int_hard():
    cost = get_dense_int(1000, 100, hard=True, seed=1299821)
    opt = 101078.0
    return cost, opt


def get_sparse_1kx1k_int():
    cost, mask = get_sparse_int(1000, 100, 0.01, seed=1299821)
    opt = 101078
    return cost, np.logical_not(mask), opt


def get_dense_4kx4k_int():
    cost = get_dense_int(4000, 100, hard=False, seed=1299821)
    opt = 1000.
    return cost, opt


def get_sparse_4kx4k_int():
    cost, mask = get_sparse_int(4000, 100, 0.004, seed=1299821)
    opt = 402541
    return cost, np.logical_not(mask), opt


# Thanks to Michael Lewis for providing this cost matrix.
def get_dense_eps():
    from pytest import approx
    datadir = os.path.abspath(os.path.dirname(__file__))
    filename = os.path.join(datadir, 'cost_eps.csv.gz')
    cost = np.genfromtxt(GzipFile(filename), delimiter=",")
    opt = approx(224.8899507294651, 0.0000000000001)
    return cost, opt


def sparse_from_dense(cost):
    cc = cost.flatten()
    n_rows = cost.shape[0]
    n_columns = cost.shape[1]
    ii = np.empty((n_rows+1,), dtype=int)
    ii[0] = 0
    ii[1:] = n_columns
    ii = np.cumsum(ii)
    kk = np.tile(np.arange(n_columns, dtype=int), n_rows)
    return n_rows, cc, ii, kk


def sparse_from_masked(cost, mask=None):
    if mask is None:
        mask = np.logical_not(np.isinf(cost))
    cc = cost[mask].flatten()
    n_rows = cost.shape[0]
    n_columns = cost.shape[1]
    ii = np.empty((n_rows+1,), dtype=int)
    ii[0] = 0
    ii[1:] = mask.sum(axis=1)
    ii = np.cumsum(ii)
    kk = np.tile(np.arange(n_columns, dtype=int), cost.shape[0])
    kk = kk[mask.flatten()]
    return n_rows, cc, ii, kk


def sparse_from_dense_CS(cost):
    i = np.tile(
            np.atleast_2d(np.arange(cost.shape[0])).T,
            cost.shape[1]).flatten()
    j = np.tile(np.arange(cost.shape[1]), cost.shape[0])
    cc = cost.flatten()
    return i, j, cc


def sparse_from_masked_CS(cost, mask):
    i = np.tile(
            np.atleast_2d(np.arange(cost.shape[0])).T,
            cost.shape[1])[mask]
    j = np.tile(np.arange(cost.shape[1]), cost.shape[0])[mask.flat]
    cc = cost[mask].flatten()
    return i, j, cc


def get_cost_CS(cost, x):
    return cost[np.arange(cost.shape[0]), x].sum()


def get_platform_maxint():
    import struct
    return 2 ** (struct.Struct('i').size * 8 - 1) - 1