1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
try:
from future_builtins import filter
except ImportError:
pass
from copy import deepcopy
###{standalone
from collections import OrderedDict
class Meta:
def __init__(self):
self.empty = True
class Tree(object):
"""The main tree class.
Creates a new tree, and stores "data" and "children" in attributes of the same name.
Trees can be hashed and compared.
Parameters:
data: The name of the rule or alias
children: List of matched sub-rules and terminals
meta: Line & Column numbers (if ``propagate_positions`` is enabled).
meta attributes: line, column, start_pos, end_line, end_column, end_pos
"""
def __init__(self, data, children, meta=None):
self.data = data
self.children = children
self._meta = meta
@property
def meta(self):
if self._meta is None:
self._meta = Meta()
return self._meta
def __repr__(self):
return 'Tree(%r, %r)' % (self.data, self.children)
def _pretty_label(self):
return self.data
def _pretty(self, level, indent_str):
if len(self.children) == 1 and not isinstance(self.children[0], Tree):
return [ indent_str*level, self._pretty_label(), '\t', '%s' % (self.children[0],), '\n']
l = [ indent_str*level, self._pretty_label(), '\n' ]
for n in self.children:
if isinstance(n, Tree):
l += n._pretty(level+1, indent_str)
else:
l += [ indent_str*(level+1), '%s' % (n,), '\n' ]
return l
def pretty(self, indent_str=' '):
"""Returns an indented string representation of the tree.
Great for debugging.
"""
return ''.join(self._pretty(0, indent_str))
def __eq__(self, other):
try:
return self.data == other.data and self.children == other.children
except AttributeError:
return False
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash((self.data, tuple(self.children)))
def iter_subtrees(self):
"""Depth-first iteration.
Iterates over all the subtrees, never returning to the same node twice (Lark's parse-tree is actually a DAG).
"""
queue = [self]
subtrees = OrderedDict()
for subtree in queue:
subtrees[id(subtree)] = subtree
queue += [c for c in reversed(subtree.children)
if isinstance(c, Tree) and id(c) not in subtrees]
del queue
return reversed(list(subtrees.values()))
def find_pred(self, pred):
"""Returns all nodes of the tree that evaluate pred(node) as true."""
return filter(pred, self.iter_subtrees())
def find_data(self, data):
"""Returns all nodes of the tree whose data equals the given data."""
return self.find_pred(lambda t: t.data == data)
###}
def expand_kids_by_index(self, *indices):
"Expand (inline) children at the given indices"
for i in sorted(indices, reverse=True): # reverse so that changing tail won't affect indices
kid = self.children[i]
self.children[i:i+1] = kid.children
def scan_values(self, pred):
for c in self.children:
if isinstance(c, Tree):
for t in c.scan_values(pred):
yield t
else:
if pred(c):
yield c
def iter_subtrees_topdown(self):
"""Breadth-first iteration.
Iterates over all the subtrees, return nodes in order like pretty() does.
"""
stack = [self]
while stack:
node = stack.pop()
if not isinstance(node, Tree):
continue
yield node
for n in reversed(node.children):
stack.append(n)
def __deepcopy__(self, memo):
return type(self)(self.data, deepcopy(self.children, memo), meta=self._meta)
def copy(self):
return type(self)(self.data, self.children)
def set(self, data, children):
self.data = data
self.children = children
# XXX Deprecated! Here for backwards compatibility <0.6.0
@property
def line(self):
return self.meta.line
@property
def column(self):
return self.meta.column
@property
def end_line(self):
return self.meta.end_line
@property
def end_column(self):
return self.meta.end_column
class SlottedTree(Tree):
__slots__ = 'data', 'children', 'rule', '_meta'
def pydot__tree_to_png(tree, filename, rankdir="LR", **kwargs):
graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
graph.write_png(filename)
def pydot__tree_to_dot(tree, filename, rankdir="LR", **kwargs):
graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
graph.write(filename)
def pydot__tree_to_graph(tree, rankdir="LR", **kwargs):
"""Creates a colorful image that represents the tree (data+children, without meta)
Possible values for `rankdir` are "TB", "LR", "BT", "RL", corresponding to
directed graphs drawn from top to bottom, from left to right, from bottom to
top, and from right to left, respectively.
`kwargs` can be any graph attribute (e. g. `dpi=200`). For a list of
possible attributes, see https://www.graphviz.org/doc/info/attrs.html.
"""
import pydot
graph = pydot.Dot(graph_type='digraph', rankdir=rankdir, **kwargs)
i = [0]
def new_leaf(leaf):
node = pydot.Node(i[0], label=repr(leaf))
i[0] += 1
graph.add_node(node)
return node
def _to_pydot(subtree):
color = hash(subtree.data) & 0xffffff
color |= 0x808080
subnodes = [_to_pydot(child) if isinstance(child, Tree) else new_leaf(child)
for child in subtree.children]
node = pydot.Node(i[0], style="filled", fillcolor="#%x"%color, label=subtree.data)
i[0] += 1
graph.add_node(node)
for subnode in subnodes:
graph.add_edge(pydot.Edge(node, subnode))
return node
_to_pydot(tree)
return graph
|