1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
|
""""This module implements an SPPF implementation
This is used as the primary output mechanism for the Earley parser
in order to store complex ambiguities.
Full reference and more details is here:
https://web.archive.org/web/20190616123959/http://www.bramvandersanden.com/post/2014/06/shared-packed-parse-forest/
"""
from typing import Type, AbstractSet
from random import randint
from collections import deque
from operator import attrgetter
from importlib import import_module
from functools import partial
from ..parse_tree_builder import AmbiguousIntermediateExpander
from ..visitors import Discard
from ..utils import logger, OrderedSet
from ..tree import Tree
class ForestNode:
pass
class SymbolNode(ForestNode):
"""
A Symbol Node represents a symbol (or Intermediate LR0).
Symbol nodes are keyed by the symbol (s). For intermediate nodes
s will be an LR0, stored as a tuple of (rule, ptr). For completed symbol
nodes, s will be a string representing the non-terminal origin (i.e.
the left hand side of the rule).
The children of a Symbol or Intermediate Node will always be Packed Nodes;
with each Packed Node child representing a single derivation of a production.
Hence a Symbol Node with a single child is unambiguous.
Parameters:
s: A Symbol, or a tuple of (rule, ptr) for an intermediate node.
start: For dynamic lexers, the index of the start of the substring matched by this symbol (inclusive).
end: For dynamic lexers, the index of the end of the substring matched by this symbol (exclusive).
Properties:
is_intermediate: True if this node is an intermediate node.
priority: The priority of the node's symbol.
"""
Set: Type[AbstractSet] = set # Overridden by StableSymbolNode
__slots__ = ('s', 'start', 'end', '_children', 'paths', 'paths_loaded', 'priority', 'is_intermediate')
def __init__(self, s, start, end):
self.s = s
self.start = start
self.end = end
self._children = self.Set()
self.paths = self.Set()
self.paths_loaded = False
### We use inf here as it can be safely negated without resorting to conditionals,
# unlike None or float('NaN'), and sorts appropriately.
self.priority = float('-inf')
self.is_intermediate = isinstance(s, tuple)
def add_family(self, lr0, rule, start, left, right):
self._children.add(PackedNode(self, lr0, rule, start, left, right))
def add_path(self, transitive, node):
self.paths.add((transitive, node))
def load_paths(self):
for transitive, node in self.paths:
if transitive.next_titem is not None:
vn = type(self)(transitive.next_titem.s, transitive.next_titem.start, self.end)
vn.add_path(transitive.next_titem, node)
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, vn)
else:
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, node)
self.paths_loaded = True
@property
def is_ambiguous(self):
"""Returns True if this node is ambiguous."""
return len(self.children) > 1
@property
def children(self):
"""Returns a list of this node's children sorted from greatest to
least priority."""
if not self.paths_loaded:
self.load_paths()
return sorted(self._children, key=attrgetter('sort_key'))
def __iter__(self):
return iter(self._children)
def __repr__(self):
if self.is_intermediate:
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.end, self.priority)
class StableSymbolNode(SymbolNode):
"A version of SymbolNode that uses OrderedSet for output stability"
Set = OrderedSet
class PackedNode(ForestNode):
"""
A Packed Node represents a single derivation in a symbol node.
Parameters:
rule: The rule associated with this node.
parent: The parent of this node.
left: The left child of this node. ``None`` if one does not exist.
right: The right child of this node. ``None`` if one does not exist.
priority: The priority of this node.
"""
__slots__ = ('parent', 's', 'rule', 'start', 'left', 'right', 'priority', '_hash')
def __init__(self, parent, s, rule, start, left, right):
self.parent = parent
self.s = s
self.start = start
self.rule = rule
self.left = left
self.right = right
self.priority = float('-inf')
self._hash = hash((self.left, self.right))
@property
def is_empty(self):
return self.left is None and self.right is None
@property
def sort_key(self):
"""
Used to sort PackedNode children of SymbolNodes.
A SymbolNode has multiple PackedNodes if it matched
ambiguously. Hence, we use the sort order to identify
the order in which ambiguous children should be considered.
"""
return self.is_empty, -self.priority, self.rule.order
@property
def children(self):
"""Returns a list of this node's children."""
return [x for x in [self.left, self.right] if x is not None]
def __iter__(self):
yield self.left
yield self.right
def __eq__(self, other):
if not isinstance(other, PackedNode):
return False
return self is other or (self.left == other.left and self.right == other.right)
def __hash__(self):
return self._hash
def __repr__(self):
if isinstance(self.s, tuple):
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.priority, self.rule.order)
class TokenNode(ForestNode):
"""
A Token Node represents a matched terminal and is always a leaf node.
Parameters:
token: The Token associated with this node.
term: The TerminalDef matched by the token.
priority: The priority of this node.
"""
__slots__ = ('token', 'term', 'priority', '_hash')
def __init__(self, token, term, priority=None):
self.token = token
self.term = term
if priority is not None:
self.priority = priority
else:
self.priority = term.priority if term is not None else 0
self._hash = hash(token)
def __eq__(self, other):
if not isinstance(other, TokenNode):
return False
return self is other or (self.token == other.token)
def __hash__(self):
return self._hash
def __repr__(self):
return repr(self.token)
class ForestVisitor:
"""
An abstract base class for building forest visitors.
This class performs a controllable depth-first walk of an SPPF.
The visitor will not enter cycles and will backtrack if one is encountered.
Subclasses are notified of cycles through the ``on_cycle`` method.
Behavior for visit events is defined by overriding the
``visit*node*`` functions.
The walk is controlled by the return values of the ``visit*node_in``
methods. Returning a node(s) will schedule them to be visited. The visitor
will begin to backtrack if no nodes are returned.
Parameters:
single_visit: If ``True``, non-Token nodes will only be visited once.
"""
def __init__(self, single_visit=False):
self.single_visit = single_visit
def visit_token_node(self, node):
"""Called when a ``Token`` is visited. ``Token`` nodes are always leaves."""
pass
def visit_symbol_node_in(self, node):
"""Called when a symbol node is visited. Nodes that are returned
will be scheduled to be visited. If ``visit_intermediate_node_in``
is not implemented, this function will be called for intermediate
nodes as well."""
pass
def visit_symbol_node_out(self, node):
"""Called after all nodes returned from a corresponding ``visit_symbol_node_in``
call have been visited. If ``visit_intermediate_node_out``
is not implemented, this function will be called for intermediate
nodes as well."""
pass
def visit_packed_node_in(self, node):
"""Called when a packed node is visited. Nodes that are returned
will be scheduled to be visited. """
pass
def visit_packed_node_out(self, node):
"""Called after all nodes returned from a corresponding ``visit_packed_node_in``
call have been visited."""
pass
def on_cycle(self, node, path):
"""Called when a cycle is encountered.
Parameters:
node: The node that causes a cycle.
path: The list of nodes being visited: nodes that have been
entered but not exited. The first element is the root in a forest
visit, and the last element is the node visited most recently.
``path`` should be treated as read-only.
"""
pass
def get_cycle_in_path(self, node, path):
"""A utility function for use in ``on_cycle`` to obtain a slice of
``path`` that only contains the nodes that make up the cycle."""
index = len(path) - 1
while id(path[index]) != id(node):
index -= 1
return path[index:]
def visit(self, root):
# Visiting is a list of IDs of all symbol/intermediate nodes currently in
# the stack. It serves two purposes: to detect when we 'recurse' in and out
# of a symbol/intermediate so that we can process both up and down. Also,
# since the SPPF can have cycles it allows us to detect if we're trying
# to recurse into a node that's already on the stack (infinite recursion).
visiting = set()
# set of all nodes that have been visited
visited = set()
# a list of nodes that are currently being visited
# used for the `on_cycle` callback
path = []
# We do not use recursion here to walk the Forest due to the limited
# stack size in python. Therefore input_stack is essentially our stack.
input_stack = deque([root])
# It is much faster to cache these as locals since they are called
# many times in large parses.
vpno = getattr(self, 'visit_packed_node_out')
vpni = getattr(self, 'visit_packed_node_in')
vsno = getattr(self, 'visit_symbol_node_out')
vsni = getattr(self, 'visit_symbol_node_in')
vino = getattr(self, 'visit_intermediate_node_out', vsno)
vini = getattr(self, 'visit_intermediate_node_in', vsni)
vtn = getattr(self, 'visit_token_node')
oc = getattr(self, 'on_cycle')
while input_stack:
current = next(reversed(input_stack))
try:
next_node = next(current)
except StopIteration:
input_stack.pop()
continue
except TypeError:
### If the current object is not an iterator, pass through to Token/SymbolNode
pass
else:
if next_node is None:
continue
if id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
continue
if isinstance(current, TokenNode):
vtn(current.token)
input_stack.pop()
continue
current_id = id(current)
if current_id in visiting:
if isinstance(current, PackedNode):
vpno(current)
elif current.is_intermediate:
vino(current)
else:
vsno(current)
input_stack.pop()
path.pop()
visiting.remove(current_id)
visited.add(current_id)
elif self.single_visit and current_id in visited:
input_stack.pop()
else:
visiting.add(current_id)
path.append(current)
if isinstance(current, PackedNode):
next_node = vpni(current)
elif current.is_intermediate:
next_node = vini(current)
else:
next_node = vsni(current)
if next_node is None:
continue
if not isinstance(next_node, ForestNode):
next_node = iter(next_node)
elif id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
class ForestTransformer(ForestVisitor):
"""The base class for a bottom-up forest transformation. Most users will
want to use ``TreeForestTransformer`` instead as it has a friendlier
interface and covers most use cases.
Transformations are applied via inheritance and overriding of the
``transform*node`` methods.
``transform_token_node`` receives a ``Token`` as an argument.
All other methods receive the node that is being transformed and
a list of the results of the transformations of that node's children.
The return value of these methods are the resulting transformations.
If ``Discard`` is raised in a node's transformation, no data from that node
will be passed to its parent's transformation.
"""
def __init__(self):
super(ForestTransformer, self).__init__()
# results of transformations
self.data = dict()
# used to track parent nodes
self.node_stack = deque()
def transform(self, root):
"""Perform a transformation on an SPPF."""
self.node_stack.append('result')
self.data['result'] = []
self.visit(root)
assert len(self.data['result']) <= 1
if self.data['result']:
return self.data['result'][0]
def transform_symbol_node(self, node, data):
"""Transform a symbol node."""
return node
def transform_intermediate_node(self, node, data):
"""Transform an intermediate node."""
return node
def transform_packed_node(self, node, data):
"""Transform a packed node."""
return node
def transform_token_node(self, node):
"""Transform a ``Token``."""
return node
def visit_symbol_node_in(self, node):
self.node_stack.append(id(node))
self.data[id(node)] = []
return node.children
def visit_packed_node_in(self, node):
self.node_stack.append(id(node))
self.data[id(node)] = []
return node.children
def visit_token_node(self, node):
transformed = self.transform_token_node(node)
if transformed is not Discard:
self.data[self.node_stack[-1]].append(transformed)
def _visit_node_out_helper(self, node, method):
self.node_stack.pop()
transformed = method(node, self.data[id(node)])
if transformed is not Discard:
self.data[self.node_stack[-1]].append(transformed)
del self.data[id(node)]
def visit_symbol_node_out(self, node):
self._visit_node_out_helper(node, self.transform_symbol_node)
def visit_intermediate_node_out(self, node):
self._visit_node_out_helper(node, self.transform_intermediate_node)
def visit_packed_node_out(self, node):
self._visit_node_out_helper(node, self.transform_packed_node)
class ForestSumVisitor(ForestVisitor):
"""
A visitor for prioritizing ambiguous parts of the Forest.
This visitor is used when support for explicit priorities on
rules is requested (whether normal, or invert). It walks the
forest (or subsets thereof) and cascades properties upwards
from the leaves.
It would be ideal to do this during parsing, however this would
require processing each Earley item multiple times. That's
a big performance drawback; so running a forest walk is the
lesser of two evils: there can be significantly more Earley
items created during parsing than there are SPPF nodes in the
final tree.
"""
def __init__(self):
super(ForestSumVisitor, self).__init__(single_visit=True)
def visit_packed_node_in(self, node):
yield node.left
yield node.right
def visit_symbol_node_in(self, node):
return iter(node.children)
def visit_packed_node_out(self, node):
priority = node.rule.options.priority if not node.parent.is_intermediate and node.rule.options.priority else 0
priority += getattr(node.right, 'priority', 0)
priority += getattr(node.left, 'priority', 0)
node.priority = priority
def visit_symbol_node_out(self, node):
node.priority = max(child.priority for child in node.children)
class PackedData():
"""Used in transformationss of packed nodes to distinguish the data
that comes from the left child and the right child.
"""
class _NoData():
pass
NO_DATA = _NoData()
def __init__(self, node, data):
self.left = self.NO_DATA
self.right = self.NO_DATA
if data:
if node.left is not None:
self.left = data[0]
if len(data) > 1:
self.right = data[1]
else:
self.right = data[0]
class ForestToParseTree(ForestTransformer):
"""Used by the earley parser when ambiguity equals 'resolve' or
'explicit'. Transforms an SPPF into an (ambiguous) parse tree.
Parameters:
tree_class: The tree class to use for construction
callbacks: A dictionary of rules to functions that output a tree
prioritizer: A ``ForestVisitor`` that manipulates the priorities of ForestNodes
resolve_ambiguity: If True, ambiguities will be resolved based on
priorities. Otherwise, `_ambig` nodes will be in the resulting tree.
use_cache: If True, the results of packed node transformations will be cached.
"""
def __init__(self, tree_class=Tree, callbacks=dict(), prioritizer=ForestSumVisitor(), resolve_ambiguity=True, use_cache=True):
super(ForestToParseTree, self).__init__()
self.tree_class = tree_class
self.callbacks = callbacks
self.prioritizer = prioritizer
self.resolve_ambiguity = resolve_ambiguity
self._use_cache = use_cache
self._cache = {}
self._on_cycle_retreat = False
self._cycle_node = None
self._successful_visits = set()
def visit(self, root):
if self.prioritizer:
self.prioritizer.visit(root)
super(ForestToParseTree, self).visit(root)
self._cache = {}
def on_cycle(self, node, path):
logger.debug("Cycle encountered in the SPPF at node: %s. "
"As infinite ambiguities cannot be represented in a tree, "
"this family of derivations will be discarded.", node)
self._cycle_node = node
self._on_cycle_retreat = True
def _check_cycle(self, node):
if self._on_cycle_retreat:
if id(node) == id(self._cycle_node) or id(node) in self._successful_visits:
self._cycle_node = None
self._on_cycle_retreat = False
else:
return Discard
def _collapse_ambig(self, children):
new_children = []
for child in children:
if hasattr(child, 'data') and child.data == '_ambig':
new_children += child.children
else:
new_children.append(child)
return new_children
def _call_rule_func(self, node, data):
# called when transforming children of symbol nodes
# data is a list of trees or tokens that correspond to the
# symbol's rule expansion
return self.callbacks[node.rule](data)
def _call_ambig_func(self, node, data):
# called when transforming a symbol node
# data is a list of trees where each tree's data is
# equal to the name of the symbol or one of its aliases.
if len(data) > 1:
return self.tree_class('_ambig', data)
elif data:
return data[0]
return Discard
def transform_symbol_node(self, node, data):
if id(node) not in self._successful_visits:
return Discard
r = self._check_cycle(node)
if r is Discard:
return r
self._successful_visits.remove(id(node))
data = self._collapse_ambig(data)
return self._call_ambig_func(node, data)
def transform_intermediate_node(self, node, data):
if id(node) not in self._successful_visits:
return Discard
r = self._check_cycle(node)
if r is Discard:
return r
self._successful_visits.remove(id(node))
if len(data) > 1:
children = [self.tree_class('_inter', c) for c in data]
return self.tree_class('_iambig', children)
return data[0]
def transform_packed_node(self, node, data):
r = self._check_cycle(node)
if r is Discard:
return r
if self.resolve_ambiguity and id(node.parent) in self._successful_visits:
return Discard
if self._use_cache and id(node) in self._cache:
return self._cache[id(node)]
children = []
assert len(data) <= 2
data = PackedData(node, data)
if data.left is not PackedData.NO_DATA:
if node.left.is_intermediate and isinstance(data.left, list):
children += data.left
else:
children.append(data.left)
if data.right is not PackedData.NO_DATA:
children.append(data.right)
transformed = children if node.parent.is_intermediate else self._call_rule_func(node, children)
if self._use_cache:
self._cache[id(node)] = transformed
return transformed
def visit_symbol_node_in(self, node):
super(ForestToParseTree, self).visit_symbol_node_in(node)
if self._on_cycle_retreat:
return
return node.children
def visit_packed_node_in(self, node):
self._on_cycle_retreat = False
to_visit = super(ForestToParseTree, self).visit_packed_node_in(node)
if not self.resolve_ambiguity or id(node.parent) not in self._successful_visits:
if not self._use_cache or id(node) not in self._cache:
return to_visit
def visit_packed_node_out(self, node):
super(ForestToParseTree, self).visit_packed_node_out(node)
if not self._on_cycle_retreat:
self._successful_visits.add(id(node.parent))
def handles_ambiguity(func):
"""Decorator for methods of subclasses of ``TreeForestTransformer``.
Denotes that the method should receive a list of transformed derivations."""
func.handles_ambiguity = True
return func
class TreeForestTransformer(ForestToParseTree):
"""A ``ForestTransformer`` with a tree ``Transformer``-like interface.
By default, it will construct a tree.
Methods provided via inheritance are called based on the rule/symbol
names of nodes in the forest.
Methods that act on rules will receive a list of the results of the
transformations of the rule's children. By default, trees and tokens.
Methods that act on tokens will receive a token.
Alternatively, methods that act on rules may be annotated with
``handles_ambiguity``. In this case, the function will receive a list
of all the transformations of all the derivations of the rule.
By default, a list of trees where each tree.data is equal to the
rule name or one of its aliases.
Non-tree transformations are made possible by override of
``__default__``, ``__default_token__``, and ``__default_ambig__``.
Note:
Tree shaping features such as inlined rules and token filtering are
not built into the transformation. Positions are also not propagated.
Parameters:
tree_class: The tree class to use for construction
prioritizer: A ``ForestVisitor`` that manipulates the priorities of nodes in the SPPF.
resolve_ambiguity: If True, ambiguities will be resolved based on priorities.
use_cache (bool): If True, caches the results of some transformations,
potentially improving performance when ``resolve_ambiguity==False``.
Only use if you know what you are doing: i.e. All transformation
functions are pure and referentially transparent.
"""
def __init__(self, tree_class=Tree, prioritizer=ForestSumVisitor(), resolve_ambiguity=True, use_cache=False):
super(TreeForestTransformer, self).__init__(tree_class, dict(), prioritizer, resolve_ambiguity, use_cache)
def __default__(self, name, data):
"""Default operation on tree (for override).
Returns a tree with name with data as children.
"""
return self.tree_class(name, data)
def __default_ambig__(self, name, data):
"""Default operation on ambiguous rule (for override).
Wraps data in an '_ambig_' node if it contains more than
one element.
"""
if len(data) > 1:
return self.tree_class('_ambig', data)
elif data:
return data[0]
return Discard
def __default_token__(self, node):
"""Default operation on ``Token`` (for override).
Returns ``node``.
"""
return node
def transform_token_node(self, node):
return getattr(self, node.type, self.__default_token__)(node)
def _call_rule_func(self, node, data):
name = node.rule.alias or node.rule.options.template_source or node.rule.origin.name
user_func = getattr(self, name, self.__default__)
if user_func == self.__default__ or hasattr(user_func, 'handles_ambiguity'):
user_func = partial(self.__default__, name)
if not self.resolve_ambiguity:
wrapper = partial(AmbiguousIntermediateExpander, self.tree_class)
user_func = wrapper(user_func)
return user_func(data)
def _call_ambig_func(self, node, data):
name = node.s.name
user_func = getattr(self, name, self.__default_ambig__)
if user_func == self.__default_ambig__ or not hasattr(user_func, 'handles_ambiguity'):
user_func = partial(self.__default_ambig__, name)
return user_func(data)
class ForestToPyDotVisitor(ForestVisitor):
"""
A Forest visitor which writes the SPPF to a PNG.
The SPPF can get really large, really quickly because
of the amount of meta-data it stores, so this is probably
only useful for trivial trees and learning how the SPPF
is structured.
"""
def __init__(self, rankdir="TB"):
super(ForestToPyDotVisitor, self).__init__(single_visit=True)
self.pydot = import_module('pydot')
self.graph = self.pydot.Dot(graph_type='digraph', rankdir=rankdir)
def visit(self, root, filename):
super(ForestToPyDotVisitor, self).visit(root)
try:
self.graph.write_png(filename)
except FileNotFoundError as e:
logger.error("Could not write png: ", e)
def visit_token_node(self, node):
graph_node_id = str(id(node))
graph_node_label = "\"{}\"".format(node.value.replace('"', '\\"'))
graph_node_color = 0x808080
graph_node_style = "\"filled,rounded\""
graph_node_shape = "diamond"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
def visit_packed_node_in(self, node):
graph_node_id = str(id(node))
graph_node_label = repr(node)
graph_node_color = 0x808080
graph_node_style = "filled"
graph_node_shape = "diamond"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
yield node.left
yield node.right
def visit_packed_node_out(self, node):
graph_node_id = str(id(node))
graph_node = self.graph.get_node(graph_node_id)[0]
for child in [node.left, node.right]:
if child is not None:
child_graph_node_id = str(id(child.token if isinstance(child, TokenNode) else child))
child_graph_node = self.graph.get_node(child_graph_node_id)[0]
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
else:
#### Try and be above the Python object ID range; probably impl. specific, but maybe this is okay.
child_graph_node_id = str(randint(100000000000000000000000000000,123456789012345678901234567890))
child_graph_node_style = "invis"
child_graph_node = self.pydot.Node(child_graph_node_id, style=child_graph_node_style, label="None")
child_edge_style = "invis"
self.graph.add_node(child_graph_node)
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node, style=child_edge_style))
def visit_symbol_node_in(self, node):
graph_node_id = str(id(node))
graph_node_label = repr(node)
graph_node_color = 0x808080
graph_node_style = "\"filled\""
if node.is_intermediate:
graph_node_shape = "ellipse"
else:
graph_node_shape = "rectangle"
graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
self.graph.add_node(graph_node)
return iter(node.children)
def visit_symbol_node_out(self, node):
graph_node_id = str(id(node))
graph_node = self.graph.get_node(graph_node_id)[0]
for child in node.children:
child_graph_node_id = str(id(child))
child_graph_node = self.graph.get_node(child_graph_node_id)[0]
self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
|