File: tree.py

package info (click to toggle)
python-lark 1.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,788 kB
  • sloc: python: 13,305; javascript: 88; makefile: 34; sh: 8
file content (267 lines) | stat: -rw-r--r-- 8,522 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import sys
from copy import deepcopy

from typing import List, Callable, Iterator, Union, Optional, Generic, TypeVar, TYPE_CHECKING

if TYPE_CHECKING:
    from .lexer import TerminalDef, Token
    try:
        import rich
    except ImportError:
        pass
    from typing import Literal

###{standalone

class Meta:

    empty: bool
    line: int
    column: int
    start_pos: int
    end_line: int
    end_column: int
    end_pos: int
    orig_expansion: 'List[TerminalDef]'
    match_tree: bool

    def __init__(self):
        self.empty = True


_Leaf_T = TypeVar("_Leaf_T")
Branch = Union[_Leaf_T, 'Tree[_Leaf_T]']


class Tree(Generic[_Leaf_T]):
    """The main tree class.

    Creates a new tree, and stores "data" and "children" in attributes of the same name.
    Trees can be hashed and compared.

    Parameters:
        data: The name of the rule or alias
        children: List of matched sub-rules and terminals
        meta: Line & Column numbers (if ``propagate_positions`` is enabled).
            meta attributes: (line, column, end_line, end_column, start_pos, end_pos,
                              container_line, container_column, container_end_line, container_end_column)
            container_* attributes consider all symbols, including those that have been inlined in the tree.
            For example, in the rule 'a: _A B _C', the regular attributes will mark the start and end of B,
            but the container_* attributes will also include _A and _C in the range. However, rules that
            contain 'a' will consider it in full, including _A and _C for all attributes.
    """

    data: str
    children: 'List[Branch[_Leaf_T]]'

    def __init__(self, data: str, children: 'List[Branch[_Leaf_T]]', meta: Optional[Meta]=None) -> None:
        self.data = data
        self.children = children
        self._meta = meta

    @property
    def meta(self) -> Meta:
        if self._meta is None:
            self._meta = Meta()
        return self._meta

    def __repr__(self):
        return 'Tree(%r, %r)' % (self.data, self.children)

    def _pretty_label(self):
        return self.data

    def _pretty(self, level, indent_str):
        yield f'{indent_str*level}{self._pretty_label()}'
        if len(self.children) == 1 and not isinstance(self.children[0], Tree):
            yield f'\t{self.children[0]}\n'
        else:
            yield '\n'
            for n in self.children:
                if isinstance(n, Tree):
                    yield from n._pretty(level+1, indent_str)
                else:
                    yield f'{indent_str*(level+1)}{n}\n'

    def pretty(self, indent_str: str='  ') -> str:
        """Returns an indented string representation of the tree.

        Great for debugging.
        """
        return ''.join(self._pretty(0, indent_str))

    def __rich__(self, parent:Optional['rich.tree.Tree']=None) -> 'rich.tree.Tree':
        """Returns a tree widget for the 'rich' library.

        Example:
            ::
                from rich import print
                from lark import Tree

                tree = Tree('root', ['node1', 'node2'])
                print(tree)
        """
        return self._rich(parent)

    def _rich(self, parent):
        if parent:
            tree = parent.add(f'[bold]{self.data}[/bold]')
        else:
            import rich.tree
            tree = rich.tree.Tree(self.data)

        for c in self.children:
            if isinstance(c, Tree):
                c._rich(tree)
            else:
                tree.add(f'[green]{c}[/green]')

        return tree

    def __eq__(self, other):
        try:
            return self.data == other.data and self.children == other.children
        except AttributeError:
            return False

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self) -> int:
        return hash((self.data, tuple(self.children)))

    def iter_subtrees(self) -> 'Iterator[Tree[_Leaf_T]]':
        """Depth-first iteration.

        Iterates over all the subtrees, never returning to the same node twice (Lark's parse-tree is actually a DAG).
        """
        queue = [self]
        subtrees = dict()
        for subtree in queue:
            subtrees[id(subtree)] = subtree
            queue += [c for c in reversed(subtree.children)
                      if isinstance(c, Tree) and id(c) not in subtrees]

        del queue
        return reversed(list(subtrees.values()))

    def iter_subtrees_topdown(self):
        """Breadth-first iteration.

        Iterates over all the subtrees, return nodes in order like pretty() does.
        """
        stack = [self]
        stack_append = stack.append
        stack_pop = stack.pop
        while stack:
            node = stack_pop()
            if not isinstance(node, Tree):
                continue
            yield node
            for child in reversed(node.children):
                stack_append(child)

    def find_pred(self, pred: 'Callable[[Tree[_Leaf_T]], bool]') -> 'Iterator[Tree[_Leaf_T]]':
        """Returns all nodes of the tree that evaluate pred(node) as true."""
        return filter(pred, self.iter_subtrees())

    def find_data(self, data: str) -> 'Iterator[Tree[_Leaf_T]]':
        """Returns all nodes of the tree whose data equals the given data."""
        return self.find_pred(lambda t: t.data == data)

###}

    def expand_kids_by_data(self, *data_values):
        """Expand (inline) children with any of the given data values. Returns True if anything changed"""
        changed = False
        for i in range(len(self.children)-1, -1, -1):
            child = self.children[i]
            if isinstance(child, Tree) and child.data in data_values:
                self.children[i:i+1] = child.children
                changed = True
        return changed


    def scan_values(self, pred: 'Callable[[Branch[_Leaf_T]], bool]') -> Iterator[_Leaf_T]:
        """Return all values in the tree that evaluate pred(value) as true.

        This can be used to find all the tokens in the tree.

        Example:
            >>> all_tokens = tree.scan_values(lambda v: isinstance(v, Token))
        """
        for c in self.children:
            if isinstance(c, Tree):
                for t in c.scan_values(pred):
                    yield t
            else:
                if pred(c):
                    yield c

    def __deepcopy__(self, memo):
        return type(self)(self.data, deepcopy(self.children, memo), meta=self._meta)

    def copy(self) -> 'Tree[_Leaf_T]':
        return type(self)(self.data, self.children)

    def set(self, data: str, children: 'List[Branch[_Leaf_T]]') -> None:
        self.data = data
        self.children = children


ParseTree = Tree['Token']


class SlottedTree(Tree):
    __slots__ = 'data', 'children', 'rule', '_meta'


def pydot__tree_to_png(tree: Tree, filename: str, rankdir: 'Literal["TB", "LR", "BT", "RL"]'="LR", **kwargs) -> None:
    graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
    graph.write_png(filename)


def pydot__tree_to_dot(tree: Tree, filename, rankdir="LR", **kwargs):
    graph = pydot__tree_to_graph(tree, rankdir, **kwargs)
    graph.write(filename)


def pydot__tree_to_graph(tree: Tree, rankdir="LR", **kwargs):
    """Creates a colorful image that represents the tree (data+children, without meta)

    Possible values for `rankdir` are "TB", "LR", "BT", "RL", corresponding to
    directed graphs drawn from top to bottom, from left to right, from bottom to
    top, and from right to left, respectively.

    `kwargs` can be any graph attribute (e. g. `dpi=200`). For a list of
    possible attributes, see https://www.graphviz.org/doc/info/attrs.html.
    """

    import pydot  # type: ignore[import-not-found]
    graph = pydot.Dot(graph_type='digraph', rankdir=rankdir, **kwargs)

    i = [0]

    def new_leaf(leaf):
        node = pydot.Node(i[0], label=repr(leaf))
        i[0] += 1
        graph.add_node(node)
        return node

    def _to_pydot(subtree):
        color = hash(subtree.data) & 0xffffff
        color |= 0x808080

        subnodes = [_to_pydot(child) if isinstance(child, Tree) else new_leaf(child)
                    for child in subtree.children]
        node = pydot.Node(i[0], style="filled", fillcolor="#%x" % color, label=subtree.data)
        i[0] += 1
        graph.add_node(node)

        for subnode in subnodes:
            graph.add_edge(pydot.Edge(node, subnode))

        return node

    _to_pydot(tree)
    return graph