1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
import unicodedata
import os
from itertools import product
from collections import deque
from typing import Callable, Iterator, List, Optional, Tuple, Type, TypeVar, Union, Dict, Any, Sequence, Iterable, AbstractSet
###{standalone
import sys, re
import logging
logger: logging.Logger = logging.getLogger("lark")
logger.addHandler(logging.StreamHandler())
# Set to highest level, since we have some warnings amongst the code
# By default, we should not output any log messages
logger.setLevel(logging.CRITICAL)
NO_VALUE = object()
T = TypeVar("T")
def classify(seq: Iterable, key: Optional[Callable] = None, value: Optional[Callable] = None) -> Dict:
d: Dict[Any, Any] = {}
for item in seq:
k = key(item) if (key is not None) else item
v = value(item) if (value is not None) else item
try:
d[k].append(v)
except KeyError:
d[k] = [v]
return d
def _deserialize(data: Any, namespace: Dict[str, Any], memo: Dict) -> Any:
if isinstance(data, dict):
if '__type__' in data: # Object
class_ = namespace[data['__type__']]
return class_.deserialize(data, memo)
elif '@' in data:
return memo[data['@']]
return {key:_deserialize(value, namespace, memo) for key, value in data.items()}
elif isinstance(data, list):
return [_deserialize(value, namespace, memo) for value in data]
return data
_T = TypeVar("_T", bound="Serialize")
class Serialize:
"""Safe-ish serialization interface that doesn't rely on Pickle
Attributes:
__serialize_fields__ (List[str]): Fields (aka attributes) to serialize.
__serialize_namespace__ (list): List of classes that deserialization is allowed to instantiate.
Should include all field types that aren't builtin types.
"""
def memo_serialize(self, types_to_memoize: List) -> Any:
memo = SerializeMemoizer(types_to_memoize)
return self.serialize(memo), memo.serialize()
def serialize(self, memo = None) -> Dict[str, Any]:
if memo and memo.in_types(self):
return {'@': memo.memoized.get(self)}
fields = getattr(self, '__serialize_fields__')
res = {f: _serialize(getattr(self, f), memo) for f in fields}
res['__type__'] = type(self).__name__
if hasattr(self, '_serialize'):
self._serialize(res, memo)
return res
@classmethod
def deserialize(cls: Type[_T], data: Dict[str, Any], memo: Dict[int, Any]) -> _T:
namespace = getattr(cls, '__serialize_namespace__', [])
namespace = {c.__name__:c for c in namespace}
fields = getattr(cls, '__serialize_fields__')
if '@' in data:
return memo[data['@']]
inst = cls.__new__(cls)
for f in fields:
try:
setattr(inst, f, _deserialize(data[f], namespace, memo))
except KeyError as e:
raise KeyError("Cannot find key for class", cls, e)
if hasattr(inst, '_deserialize'):
inst._deserialize()
return inst
class SerializeMemoizer(Serialize):
"A version of serialize that memoizes objects to reduce space"
__serialize_fields__ = 'memoized',
def __init__(self, types_to_memoize: List) -> None:
self.types_to_memoize = tuple(types_to_memoize)
self.memoized = Enumerator()
def in_types(self, value: Serialize) -> bool:
return isinstance(value, self.types_to_memoize)
def serialize(self) -> Dict[int, Any]: # type: ignore[override]
return _serialize(self.memoized.reversed(), None)
@classmethod
def deserialize(cls, data: Dict[int, Any], namespace: Dict[str, Any], memo: Dict[Any, Any]) -> Dict[int, Any]: # type: ignore[override]
return _deserialize(data, namespace, memo)
try:
import regex
_has_regex = True
except ImportError:
_has_regex = False
if sys.version_info >= (3, 11):
import re._parser as sre_parse
import re._constants as sre_constants
else:
import sre_parse
import sre_constants
categ_pattern = re.compile(r'\\p{[A-Za-z_]+}')
def get_regexp_width(expr: str) -> Union[Tuple[int, int], List[int]]:
if _has_regex:
# Since `sre_parse` cannot deal with Unicode categories of the form `\p{Mn}`, we replace these with
# a simple letter, which makes no difference as we are only trying to get the possible lengths of the regex
# match here below.
regexp_final = re.sub(categ_pattern, 'A', expr)
else:
if re.search(categ_pattern, expr):
raise ImportError('`regex` module must be installed in order to use Unicode categories.', expr)
regexp_final = expr
try:
# Fixed in next version (past 0.960) of typeshed
return [int(x) for x in sre_parse.parse(regexp_final).getwidth()]
except sre_constants.error:
if not _has_regex:
raise ValueError(expr)
else:
# sre_parse does not support the new features in regex. To not completely fail in that case,
# we manually test for the most important info (whether the empty string is matched)
c = regex.compile(regexp_final)
# Python 3.11.7 introducded sre_parse.MAXWIDTH that is used instead of MAXREPEAT
# See lark-parser/lark#1376 and python/cpython#109859
MAXWIDTH = getattr(sre_parse, "MAXWIDTH", sre_constants.MAXREPEAT)
if c.match('') is None:
# MAXREPEAT is a none pickable subclass of int, therefore needs to be converted to enable caching
return 1, int(MAXWIDTH)
else:
return 0, int(MAXWIDTH)
###}
_ID_START = 'Lu', 'Ll', 'Lt', 'Lm', 'Lo', 'Mn', 'Mc', 'Pc'
_ID_CONTINUE = _ID_START + ('Nd', 'Nl',)
def _test_unicode_category(s: str, categories: Sequence[str]) -> bool:
if len(s) != 1:
return all(_test_unicode_category(char, categories) for char in s)
return s == '_' or unicodedata.category(s) in categories
def is_id_continue(s: str) -> bool:
"""
Checks if all characters in `s` are alphanumeric characters (Unicode standard, so diacritics, indian vowels, non-latin
numbers, etc. all pass). Synonymous with a Python `ID_CONTINUE` identifier. See PEP 3131 for details.
"""
return _test_unicode_category(s, _ID_CONTINUE)
def is_id_start(s: str) -> bool:
"""
Checks if all characters in `s` are alphabetic characters (Unicode standard, so diacritics, indian vowels, non-latin
numbers, etc. all pass). Synonymous with a Python `ID_START` identifier. See PEP 3131 for details.
"""
return _test_unicode_category(s, _ID_START)
def dedup_list(l: Sequence[T]) -> List[T]:
"""Given a list (l) will removing duplicates from the list,
preserving the original order of the list. Assumes that
the list entries are hashable."""
return list(dict.fromkeys(l))
class Enumerator(Serialize):
def __init__(self) -> None:
self.enums: Dict[Any, int] = {}
def get(self, item) -> int:
if item not in self.enums:
self.enums[item] = len(self.enums)
return self.enums[item]
def __len__(self):
return len(self.enums)
def reversed(self) -> Dict[int, Any]:
r = {v: k for k, v in self.enums.items()}
assert len(r) == len(self.enums)
return r
def combine_alternatives(lists):
"""
Accepts a list of alternatives, and enumerates all their possible concatenations.
Examples:
>>> combine_alternatives([range(2), [4,5]])
[[0, 4], [0, 5], [1, 4], [1, 5]]
>>> combine_alternatives(["abc", "xy", '$'])
[['a', 'x', '$'], ['a', 'y', '$'], ['b', 'x', '$'], ['b', 'y', '$'], ['c', 'x', '$'], ['c', 'y', '$']]
>>> combine_alternatives([])
[[]]
"""
if not lists:
return [[]]
assert all(l for l in lists), lists
return list(product(*lists))
try:
import atomicwrites
_has_atomicwrites = True
except ImportError:
_has_atomicwrites = False
class FS:
exists = staticmethod(os.path.exists)
@staticmethod
def open(name, mode="r", **kwargs):
if _has_atomicwrites and "w" in mode:
return atomicwrites.atomic_write(name, mode=mode, overwrite=True, **kwargs)
else:
return open(name, mode, **kwargs)
class fzset(frozenset):
def __repr__(self):
return '{%s}' % ', '.join(map(repr, self))
def classify_bool(seq: Iterable, pred: Callable) -> Any:
false_elems = []
true_elems = [elem for elem in seq if pred(elem) or false_elems.append(elem)] # type: ignore[func-returns-value]
return true_elems, false_elems
def bfs(initial: Iterable, expand: Callable) -> Iterator:
open_q = deque(list(initial))
visited = set(open_q)
while open_q:
node = open_q.popleft()
yield node
for next_node in expand(node):
if next_node not in visited:
visited.add(next_node)
open_q.append(next_node)
def bfs_all_unique(initial, expand):
"bfs, but doesn't keep track of visited (aka seen), because there can be no repetitions"
open_q = deque(list(initial))
while open_q:
node = open_q.popleft()
yield node
open_q += expand(node)
def _serialize(value: Any, memo: Optional[SerializeMemoizer]) -> Any:
if isinstance(value, Serialize):
return value.serialize(memo)
elif isinstance(value, list):
return [_serialize(elem, memo) for elem in value]
elif isinstance(value, frozenset):
return list(value) # TODO reversible?
elif isinstance(value, dict):
return {key:_serialize(elem, memo) for key, elem in value.items()}
# assert value is None or isinstance(value, (int, float, str, tuple)), value
return value
def small_factors(n: int, max_factor: int) -> List[Tuple[int, int]]:
"""
Splits n up into smaller factors and summands <= max_factor.
Returns a list of [(a, b), ...]
so that the following code returns n:
n = 1
for a, b in values:
n = n * a + b
Currently, we also keep a + b <= max_factor, but that might change
"""
assert n >= 0
assert max_factor > 2
if n <= max_factor:
return [(n, 0)]
for a in range(max_factor, 1, -1):
r, b = divmod(n, a)
if a + b <= max_factor:
return small_factors(r, max_factor) + [(a, b)]
assert False, "Failed to factorize %s" % n
class OrderedSet(AbstractSet[T]):
"""A minimal OrderedSet implementation, using a dictionary.
(relies on the dictionary being ordered)
"""
def __init__(self, items: Iterable[T] =()):
self.d = dict.fromkeys(items)
def __contains__(self, item: Any) -> bool:
return item in self.d
def add(self, item: T):
self.d[item] = None
def __iter__(self) -> Iterator[T]:
return iter(self.d)
def remove(self, item: T):
del self.d[item]
def __bool__(self):
return bool(self.d)
def __len__(self) -> int:
return len(self.d)
def __repr__(self):
return f"{type(self).__name__}({', '.join(map(repr,self))})"
|