File: dims.py

package info (click to toggle)
python-laspy 2.5.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,928 kB
  • sloc: python: 9,065; makefile: 20
file content (802 lines) | stat: -rw-r--r-- 24,200 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
"""  This module contains things like the definitions of the point formats dimensions,
the mapping between dimension names and their type, mapping between point format and
compatible file version
"""

import abc
import collections
import operator
from collections import UserDict
from enum import Enum
from typing import (
    Any,
    Dict,
    Generic,
    Iterable,
    List,
    Mapping,
    NamedTuple,
    Optional,
    Set,
    Tuple,
    Type,
    TypeVar,
    Union,
)

import numpy as np

from .. import errors
from . import packing

ValueType = TypeVar("ValueType")


class PointFormatDict(UserDict, Generic[ValueType]):
    """Simple wrapper around a dict that changes
    the exception raised when accessing a key that is not-present

    """

    def __init__(self, wrapped_dict: Dict[int, ValueType]):
        super().__init__(wrapped_dict)

    def __getitem__(self, key: int) -> ValueType:
        try:
            return self.data[key]
        except KeyError:
            raise errors.PointFormatNotSupported(key) from None


class SubField(NamedTuple):
    name: str
    mask: int


def _point_format_to_dtype(
    point_format: Iterable[str], dimensions_to_type: Mapping[str, np.dtype]
) -> np.dtype:
    """build the numpy.dtype for a point format

    Parameters:
    ----------
    point_format : iterable of str
        The dimensions names of the point format
    dimensions : dict
        The dictionary of dimensions
    Returns
    -------
    numpy.dtype
        The dtype for the input point format
    """
    return np.dtype(
        [(dim_name, dimensions_to_type[dim_name]) for dim_name in point_format]
    )


def _build_point_formats_dtypes(
    point_format_dimensions: Mapping[int, Tuple[str]],
    dimensions_dict: Mapping[str, np.dtype],
) -> Dict[int, np.dtype]:
    """Builds the dict mapping point format id to numpy.dtype
    In the dtypes, bit fields are still packed, and need to be unpacked each time
    you want to access them
    """
    return {
        fmt_id: _point_format_to_dtype(point_fmt, dimensions_dict)
        for fmt_id, point_fmt in point_format_dimensions.items()
    }


OLD_LASPY_NAMES = {
    "flag_byte": "bit_fields",
    "return_num": "return_number",
    "num_returns": "number_of_returns",
    "scan_dir_flag": "scan_direction_flag",
    "edge_flight_line": "edge_of_flight_line",
    "pt_src_id": "point_source_id",
    "wave_packet_desc_index": "wavepacket_index",
    "byte_offset_to_waveform_data": "wavepacket_offset",
    "waveform_packet_size": "wavepacket_size",
    "return_point_waveform_loc": "return_point_wave_location",
}

# Definition of the points dimensions and formats
# LAS version [1.0, 1.1, 1.2, 1.3, 1.4]
DIMENSIONS_TO_TYPE: Dict[str, np.dtype] = {
    "X": np.dtype("i4"),
    "Y": np.dtype("i4"),
    "Z": np.dtype("i4"),
    "intensity": np.dtype("u2"),
    "bit_fields": np.dtype("u1"),
    "raw_classification": np.dtype("u1"),
    "scan_angle_rank": np.dtype("i1"),
    "user_data": np.dtype("u1"),
    "point_source_id": np.dtype("u2"),
    "gps_time": np.dtype("f8"),
    "red": np.dtype("u2"),
    "green": np.dtype("u2"),
    "blue": np.dtype("u2"),
    # Waveform related dimensions
    "wavepacket_index": np.dtype("u1"),
    "wavepacket_offset": np.dtype("u8"),
    "wavepacket_size": np.dtype("u4"),
    "return_point_wave_location": np.dtype("f4"),
    "x_t": np.dtype("f4"),
    "y_t": np.dtype("f4"),
    "z_t": np.dtype("f4"),
    # Las 1.4
    "classification_flags": np.dtype("u1"),
    "scan_angle": np.dtype("i2"),
    "classification": np.dtype("u1"),
    "nir": np.dtype("u2"),
}

POINT_FORMAT_0: Tuple[str, ...] = (
    "X",
    "Y",
    "Z",
    "intensity",
    "bit_fields",
    "raw_classification",
    "scan_angle_rank",
    "user_data",
    "point_source_id",
)

POINT_FORMAT_6: Tuple[str, ...] = (
    "X",
    "Y",
    "Z",
    "intensity",
    "bit_fields",
    "classification_flags",
    "classification",
    "user_data",
    "scan_angle",
    "point_source_id",
    "gps_time",
)

WAVEFORM_FIELDS_NAMES: Tuple[str, ...] = (
    "wavepacket_index",
    "wavepacket_offset",
    "wavepacket_size",
    "return_point_wave_location",
    "x_t",
    "y_t",
    "z_t",
)

COLOR_FIELDS_NAMES: Tuple[str, ...] = ("red", "green", "blue")

POINT_FORMAT_DIMENSIONS = PointFormatDict(
    {
        0: POINT_FORMAT_0,
        1: POINT_FORMAT_0 + ("gps_time",),
        2: POINT_FORMAT_0 + COLOR_FIELDS_NAMES,
        3: POINT_FORMAT_0 + ("gps_time",) + COLOR_FIELDS_NAMES,
        4: POINT_FORMAT_0 + ("gps_time",) + WAVEFORM_FIELDS_NAMES,
        5: POINT_FORMAT_0 + ("gps_time",) + COLOR_FIELDS_NAMES + WAVEFORM_FIELDS_NAMES,
        6: POINT_FORMAT_6,
        7: POINT_FORMAT_6 + COLOR_FIELDS_NAMES,
        8: POINT_FORMAT_6 + COLOR_FIELDS_NAMES + ("nir",),
        9: POINT_FORMAT_6 + WAVEFORM_FIELDS_NAMES,
        10: POINT_FORMAT_6 + COLOR_FIELDS_NAMES + ("nir",) + WAVEFORM_FIELDS_NAMES,
    }
)

# sub fields of the 'bit_fields' dimension
RETURN_NUMBER_MASK_0 = 0b00000111
NUMBER_OF_RETURNS_MASK_0 = 0b00111000
SCAN_DIRECTION_FLAG_MASK_0 = 0b01000000
EDGE_OF_FLIGHT_LINE_MASK_0 = 0b10000000

# sub fields of the 'raw_classification' dimension
CLASSIFICATION_MASK_0 = 0b00011111
SYNTHETIC_MASK_0 = 0b00100000
KEY_POINT_MASK_0 = 0b01000000
WITHHELD_MASK_0 = 0b10000000

# sub fields of the bit_fields
RETURN_NUMBER_MASK_6 = 0b00001111
NUMBER_OF_RETURNS_MASK_6 = 0b11110000

# sub fields of classification flags
CLASSIFICATION_FLAGS_MASK_6 = 0b00001111

SYNTHETIC_MASK_6 = 0b00000001
KEY_POINT_MASK_6 = 0b00000010
WITHHELD_MASK_6 = 0b00000100
OVERLAP_MASK_6 = 0b00001000
SCANNER_CHANNEL_MASK_6 = 0b00110000
SCAN_DIRECTION_FLAG_MASK_6 = 0b01000000
EDGE_OF_FLIGHT_LINE_MASK_6 = 0b10000000

COMPOSED_FIELDS_0: Dict[str, List[SubField]] = {
    "bit_fields": [
        SubField("return_number", RETURN_NUMBER_MASK_0),
        SubField("number_of_returns", NUMBER_OF_RETURNS_MASK_0),
        SubField("scan_direction_flag", SCAN_DIRECTION_FLAG_MASK_0),
        SubField("edge_of_flight_line", EDGE_OF_FLIGHT_LINE_MASK_0),
    ],
    "raw_classification": [
        SubField("classification", CLASSIFICATION_MASK_0),
        SubField("synthetic", SYNTHETIC_MASK_0),
        SubField("key_point", KEY_POINT_MASK_0),
        SubField("withheld", WITHHELD_MASK_0),
    ],
}

COMPOSED_FIELDS_6: Dict[str, List[SubField]] = {
    "bit_fields": [
        SubField("return_number", RETURN_NUMBER_MASK_6),
        SubField("number_of_returns", NUMBER_OF_RETURNS_MASK_6),
    ],
    "classification_flags": [
        SubField("synthetic", SYNTHETIC_MASK_6),
        SubField("key_point", KEY_POINT_MASK_6),
        SubField("withheld", WITHHELD_MASK_6),
        SubField("overlap", OVERLAP_MASK_6),
        SubField("scanner_channel", SCANNER_CHANNEL_MASK_6),
        SubField("scan_direction_flag", SCAN_DIRECTION_FLAG_MASK_6),
        SubField("edge_of_flight_line", EDGE_OF_FLIGHT_LINE_MASK_6),
    ],
}

# Dict giving the composed fields for each point_format_id
COMPOSED_FIELDS = PointFormatDict(
    {
        0: COMPOSED_FIELDS_0,
        1: COMPOSED_FIELDS_0,
        2: COMPOSED_FIELDS_0,
        3: COMPOSED_FIELDS_0,
        4: COMPOSED_FIELDS_0,
        5: COMPOSED_FIELDS_0,
        6: COMPOSED_FIELDS_6,
        7: COMPOSED_FIELDS_6,
        8: COMPOSED_FIELDS_6,
        9: COMPOSED_FIELDS_6,
        10: COMPOSED_FIELDS_6,
    }
)

VERSION_TO_POINT_FMT: Dict[str, Tuple[int, ...]] = {
    "1.1": (0, 1),
    "1.2": (0, 1, 2, 3),
    "1.3": (0, 1, 2, 3, 4, 5),
    "1.4": (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
}

POINT_FORMATS_DTYPE = PointFormatDict(
    _build_point_formats_dtypes(POINT_FORMAT_DIMENSIONS, DIMENSIONS_TO_TYPE)
)
# This Dict maps point_format_ids to their dimensions names
ALL_POINT_FORMATS_DIMENSIONS = PointFormatDict({**POINT_FORMAT_DIMENSIONS})
# This Dict maps point_format_ids to their numpy.dtype
# the dtype corresponds to the de packed data
ALL_POINT_FORMATS_DTYPE = PointFormatDict({**POINT_FORMATS_DTYPE})


def get_sub_fields_dict(point_format_id: int) -> Dict[str, Tuple[str, SubField]]:
    sub_fields_dict = {}
    for composed_dim_name, sub_fields in COMPOSED_FIELDS[point_format_id].items():
        for sub_field in sub_fields:
            sub_fields_dict[sub_field.name] = (composed_dim_name, sub_field)
    return sub_fields_dict


class DimensionKind(Enum):
    SignedInteger = 0
    UnsignedInteger = 1
    FloatingPoint = 2
    BitField = 3

    @classmethod
    def from_letter(cls, letter: str) -> "DimensionKind":
        if letter == "u":
            return cls.UnsignedInteger
        elif letter == "i":
            return cls.SignedInteger
        elif letter == "f":
            return cls.FloatingPoint
        else:
            raise ValueError(f"Unknown type letter '{letter}'")

    def letter(self) -> Optional[str]:
        if self == DimensionKind.UnsignedInteger:
            return "u"
        elif self == DimensionKind.SignedInteger:
            return "i"
        elif self == DimensionKind.FloatingPoint:
            return "f"
        else:
            return None


def num_bit_set(n: int) -> int:
    """Count the number of bits that are set (1) in the number n

    Brian Kernighan's algorithm
    """
    count = 0
    while n != 0:
        count += 1
        n = n & (n - 1)
    return count


class DimensionInfo(NamedTuple):
    """Tuple that contains information of a dimension"""

    name: str
    kind: DimensionKind
    num_bits: int
    num_elements: int = 1
    is_standard: bool = True
    description: str = ""
    offsets: Optional[np.ndarray] = None
    scales: Optional[np.ndarray] = None

    @classmethod
    def from_extra_bytes_param(cls, params):
        me = cls(
            params.name,
            DimensionKind.from_letter(params.type.base.kind),
            params.type.itemsize * 8,
            params.type.shape[0] if params.type.ndim == 1 else 1,
            False,
            params.description,
            params.offsets,
            params.scales,
        )
        me._validate()
        return me

    @classmethod
    def from_dtype(
        cls,
        name: str,
        dtype: np.dtype,
        is_standard: bool = True,
        description: str = "",
        offsets: Optional[np.ndarray] = None,
        scales: Optional[np.ndarray] = None,
    ) -> "DimensionInfo":
        if dtype.ndim != 0:
            num_elements = dtype.shape[0]
        else:
            num_elements = 1

        kind = DimensionKind.from_letter(dtype.base.kind)
        num_bits = dtype.itemsize * 8

        self = cls(
            name,
            kind,
            num_bits,
            num_elements,
            is_standard,
            description=description,
            offsets=offsets,
            scales=scales,
        )
        self._validate()
        return self

    @classmethod
    def from_bitmask(
        cls, name: str, bit_mask: int, is_standard: bool = False
    ) -> "DimensionInfo":
        kind = DimensionKind.BitField
        bit_size = num_bit_set(bit_mask)
        return cls(name, kind, bit_size, is_standard=is_standard)

    @property
    def num_bytes(self) -> int:
        return int(self.num_bits // 8)

    @property
    def num_bytes_singular_element(self) -> int:
        return int(self.num_bits // (8 * self.num_elements))

    @property
    def is_scaled(self) -> bool:
        return self.scales is not None or self.offsets is not None

    @property
    def max(self):
        if self.kind == DimensionKind.BitField:
            return (2**self.num_bits) - 1
        elif self.kind == DimensionKind.FloatingPoint:
            return np.finfo(self.type_str()).max
        else:
            return np.iinfo(self.type_str()).max

    @property
    def min(self):
        if (
            self.kind == DimensionKind.BitField
            or self.kind == DimensionKind.UnsignedInteger
        ):
            return 0
        elif self.kind == DimensionKind.FloatingPoint:
            return np.finfo(self.type_str()).min
        else:
            return np.iinfo(self.type_str()).min

    def type_str(self) -> Optional[str]:
        if self.kind == DimensionKind.BitField:
            return None

        if self.num_elements == 1:
            return f"{self.kind.letter()}{self.num_bytes_singular_element}"
        return (
            f"{self.num_elements}{self.kind.letter()}{self.num_bytes_singular_element}"
        )

    @property
    def dtype(self) -> Optional[np.dtype]:
        type_str = self.type_str()
        if type_str is not None:
            return np.dtype(type_str)
        return None

    def __eq__(self, other: "DimensionInfo") -> bool:
        # Named Tuple implements that for us, but
        # when scales and offset are not None (thus are array)
        # The default '==' won't work
        # (ValueError, value of an array with more than one element is ambiguous)
        return (
            self.name == other.name
            and self.kind == other.kind
            and self.num_bits == other.num_bits
            and self.is_standard == other.is_standard
            and self.description == other.description
            and np.all(self.offsets == other.offsets)
            and np.all(self.scales == other.scales)
        )

    def __ne__(self, other: "DimensionInfo") -> bool:
        return not self == other

    def _validate(self):
        if (self.offsets is not None and self.scales is None) or (
            self.offsets is None and self.scales is not None
        ):
            raise ValueError("Cannot provide scales without offsets and vice-versa")

        if self.offsets is not None and len(self.offsets) != self.num_elements:
            raise ValueError(
                f"len(offsets) ({len(self.offsets)}) is not the same as the number of elements ({self.num_elements})"
            )

        if self.scales is not None and len(self.scales) != self.num_elements:
            raise ValueError(
                f"len(scales) ({len(self.scales)}) is not the same as the number of elements ({self.num_elements})"
            )


def size_of_point_format_id(point_format_id: int) -> int:
    return ALL_POINT_FORMATS_DTYPE[point_format_id].itemsize


def preferred_file_version_for_point_format(point_format_id: int) -> str:
    def inclusive_range(start: int, stop: int):
        return range(start, stop + 1)

    if point_format_id in inclusive_range(0, 3):
        return "1.2"
    elif point_format_id in inclusive_range(4, 5):
        return "1.3"
    elif point_format_id in inclusive_range(6, 10):
        return "1.4"
    else:
        raise errors.PointFormatNotSupported(point_format_id)


def min_point_format_for_version(version: str) -> int:
    return VERSION_TO_POINT_FMT[version][0]


def supported_versions() -> Set[str]:
    """Returns the set of supported file versions"""
    return set(VERSION_TO_POINT_FMT.keys())


def supported_point_formats() -> Set[int]:
    """Returns a set of all the point formats supported in laspy"""
    return set(POINT_FORMAT_DIMENSIONS.keys())


def is_point_fmt_compatible_with_version(
    point_format_id: int, file_version: str
) -> bool:
    """Returns true if the file version support the point_format_id"""
    try:
        return point_format_id in VERSION_TO_POINT_FMT[str(file_version)]
    except KeyError:
        raise errors.FileVersionNotSupported(file_version)


def raise_if_version_not_compatible_with_fmt(point_format_id: int, file_version: str):
    if not is_point_fmt_compatible_with_version(point_format_id, file_version):
        raise errors.LaspyException(
            "Point format {} is not compatible with file version {}".format(
                point_format_id, file_version
            )
        )


def _convert_array_views_to_array(
    view_class: Type, some_args: Union[List[Any], Tuple[Any, ...]]
) -> List[Any]:
    converted_args = []
    for arg in some_args:
        if isinstance(arg, (list, tuple)):
            converted_args.append(_convert_array_views_to_array(view_class, arg))
        elif isinstance(arg, view_class):
            converted_args.append(np.array(arg))
        else:
            converted_args.append(arg)

    return converted_args


class ArrayView(abc.ABC):
    def __init__(self, array) -> None:
        self.array = array

    @abc.abstractmethod
    def __array__(self, *args, **kwargs) -> np.ndarray:
        ...

    @abc.abstractmethod
    def __getitem__(self, item):
        ...

    @abc.abstractmethod
    def __setitem__(self, key, value):
        ...

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        inpts = _convert_array_views_to_array(self.__class__, inputs)
        return getattr(ufunc, method)(*inpts, **kwargs)

    def __array_function__(self, func, types, args, kwargs):
        argslist = _convert_array_views_to_array(self.__class__, args)
        return func(*argslist, **kwargs)

    def copy(self) -> np.ndarray:
        return np.array(self)

    @property
    def dtype(self):
        return self.array.dtype

    @property
    def shape(self):
        return self.array.shape

    @property
    def ndim(self):
        return self.array.ndim

    def max(self, *args, **kwargs):
        return np.array(self).max(*args, **kwargs)

    def min(self, *args, **kwargs):
        return np.array(self).min(*args, **kwargs)

    def __len__(self):
        return len(self.array)

    def __lt__(self, other):
        return np.array(self) < other

    def __le__(self, other):
        return np.array(self) <= other

    def __ge__(self, other):
        return np.array(self) >= other

    def __gt__(self, other):
        return np.array(self) > other

    def __eq__(self, other):
        return np.array(self) == other

    def __ne__(self, other):
        return np.array(self) != other

    def __add__(self, other):
        return np.array(self) + other

    def __sub__(self, other):
        return np.array(self) - other

    def __mul__(self, other):
        return np.array(self) * other

    def __truediv__(self, other):
        return np.array(self) / other

    def __floordiv__(self, other):
        return np.array(self) // other

    def __repr__(self):
        return f"<{self.__class__.__name__}({np.array(self)})>"


class SubFieldView(ArrayView):
    """Offers a view onto a LAS field that is a bit field.

    This class allows to read and modify, the array that stores the
    bit field directly.
    """

    def __init__(self, array: np.ndarray, bit_mask):
        super().__init__(array)
        self.bit_mask = self.array.dtype.type(bit_mask)
        self.lsb = packing.least_significant_bit_set(bit_mask)
        self.max_value_allowed = int(self.bit_mask >> self.lsb)

    def masked_array(self):
        return (self.array & self.bit_mask) >> self.lsb

    def _do_comparison(self, value, comp):
        if isinstance(value, (int, type(self.array.dtype))):
            if value > self.max_value_allowed:
                return np.zeros_like(self.array, bool)
        return comp(self.array & self.bit_mask, value << self.lsb)

    def __array__(self, *args, **kwargs):
        ret = self.masked_array()
        if not isinstance(ret, np.ndarray):
            ret = np.array(ret)
        return ret

    def __lt__(self, other):
        return self._do_comparison(other, operator.lt)

    def __le__(self, other):
        return self._do_comparison(other, operator.le)

    def __ge__(self, other):
        return self._do_comparison(other, operator.ge)

    def __gt__(self, other):
        return self._do_comparison(other, operator.gt)

    def __setitem__(self, key, value):
        # bail out on empty sequences
        if isinstance(value, collections.abc.Sized) and len(value) == 0:
            return

        if np.max(value) > self.max_value_allowed:
            raise OverflowError(
                f"value {np.max(value)} is greater than allowed (max: {self.max_value_allowed})"
            )
        value = np.asarray(value)
        self.array[key] &= ~self.bit_mask

        # This is not allowed without a casting="unsafe" argument
        # in Numpy 2.0
        # self.array[key] |= shifted
        shifted = value << self.lsb
        self.array[key] = np.bitwise_or(self.array[key], shifted, casting="unsafe")

    def __getitem__(self, item):
        sliced = SubFieldView(self.array[item], int(self.bit_mask))
        if isinstance(item, int):
            return sliced.masked_array()
        return sliced


class ScaledArrayView(ArrayView):
    def __init__(
        self,
        array: np.ndarray,
        scale: Union[float, np.ndarray],
        offset: Union[float, np.ndarray],
    ) -> None:
        super().__init__(array)
        self.scale = scale
        self.offset = offset

    def scaled_array(self):
        return self._apply_scale(self.array)

    def __array__(self, *args, **kwargs) -> np.ndarray:
        return self.scaled_array()

    def _apply_scale(self, value):
        return (value * self.scale) + self.offset

    def _remove_scale(self, value):
        return np.round((value - self.offset) / self.scale)

    def max(self, *args, **kwargs):
        return self._apply_scale(self.array.max(*args, **kwargs))

    def min(self, *args, **kwargs):
        return self._apply_scale(self.array.min(*args, **kwargs))

    @property
    def dtype(self):
        return np.dtype(np.float64)

    def _do_comparison(self, other, op):
        # The implementation of comparison by the base class
        # does a conversion to np.array of self, which is not free
        # we try to avoid that here
        if isinstance(other, (int, float, np.number)):
            other = self._remove_scale(other)
            return getattr(self.array, op)(other)
        return getattr(super(), op)(other)

    def __ge__(self, other):
        return self._do_comparison(other, "__ge__")

    def __gt__(self, other):
        return self._do_comparison(other, "__gt__")

    def __le__(self, other):
        return self._do_comparison(other, "__le__")

    def __lt__(self, other):
        return self._do_comparison(other, "__lt__")

    def __eq__(self, other):
        return self._do_comparison(other, "__eq__")

    def __ne__(self, other):
        return self._do_comparison(other, "__ne__")

    def __getitem__(self, item):
        if isinstance(item, int):
            return self._apply_scale(self.array[item])
        elif isinstance(item, slice):
            return self.__class__(self.array[item], self.scale, self.offset)
        else:
            sliced_array = self.array[item]
            if len(item) == 2:
                if item[1] is Ellipsis:
                    # item is (index, ...), it queries for all the dimensions
                    # of a point or set of point, so we don't slice the scales/offsets
                    return self.__class__(sliced_array, self.scale, self.offset)
                elif item[0] is Ellipsis:
                    # item is something like (..., index)
                    # it queries for one dimension or set of dimension
                    # for all the points, so we need to slice the scales/offsets
                    return self.__class__(
                        sliced_array, self.scale[item[1]], self.offset[item[1]]
                    )
            return self.__class__(sliced_array, self.scale, self.offset)

    def __setitem__(self, key, value):
        # bail out on empty sequences
        if isinstance(value, collections.abc.Sized) and len(value) == 0:
            return

        try:
            info = np.iinfo(self.array.dtype)
        except ValueError:
            info = np.finfo(self.array.dtype)

        new_max = np.max(value)
        new_min = np.min(value)

        max_allowed = self._apply_scale(info.max)
        min_allowed = self._apply_scale(info.min)

        if np.any(new_max > max_allowed) or np.any(new_min < min_allowed):
            raise OverflowError(
                "Values given do not fit after applying offset and scale"
            )
        if isinstance(value, ScaledArrayView):
            value = np.array(value)
        self.array[key] = self._remove_scale(value)

    def __repr__(self):
        return f"<ScaledArrayView({self.scaled_array()})>"