1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
""" Contains the classes that manages Las PointRecords
Las PointRecords are represented using Numpy's structured arrays,
The PointRecord classes provide a few extra things to manage these arrays
in the context of Las point data
"""
import logging
from copy import deepcopy
from enum import Enum, auto
from typing import Optional
import numpy as np
import sys
from ..point import PointFormat
from . import dims
from .dims import OLD_LASPY_NAMES, ScaledArrayView
logger = logging.getLogger(__name__)
def scale_dimension(array_dim, scale, offset):
return (array_dim * scale) + offset
def unscale_dimension(array_dim, scale, offset):
return np.round((np.array(array_dim) - offset) / scale)
class DimensionNameValidity(Enum):
"""Helper class to make the return value of
PackedPointRecord.validate_dimentsion_name more expressive.
"""
# Means the name is valid and supported by the point format
Valid = auto()
# Means the name is valid but _not_ supported by the point format
Unsupported = auto()
# The name does not exist in LAS spec
Invalid = auto()
class PackedPointRecord:
"""
In the PackedPointRecord, fields that are a combinations of many sub-fields (fields stored on less than a byte)
are still packed together and are only de-packed and re-packed when accessed.
This uses of less memory than if the sub-fields were unpacked
>>> #return number is a sub-field
>>> from laspy import PointFormat, PackedPointRecord
>>> packed_point_record = PackedPointRecord.zeros(10,PointFormat(0))
>>> return_number = packed_point_record['return_number']
>>> return_number
<SubFieldView([0 0 0 0 0 0 0 0 0 0])>
>>> return_number[:] = 1
>>> bool(np.all(packed_point_record['return_number'] == 1))
True
"""
def __init__(self, data: np.ndarray, point_format: PointFormat):
self.__dict__["array"] = data
self.__dict__["point_format"] = point_format
self.__dict__["sub_fields_dict"] = dims.get_sub_fields_dict(point_format.id)
@property
def point_size(self):
"""Returns the point size in bytes taken by each points of the record
Returns
-------
int
The point size in byte
"""
return self.array.dtype.itemsize
@staticmethod
def zeros(point_count, point_format):
"""Creates a new point record with all dimensions initialized to zero
Parameters
----------
point_format: PointFormat
The point format id the point record should have
point_count : int
The number of point the point record should have
Returns
-------
PackedPointRecord
"""
data = np.zeros(point_count, point_format.dtype())
return PackedPointRecord(data, point_format)
@staticmethod
def empty(point_format):
"""Creates an empty point record.
Parameters
----------
point_format: laspy.PointFormat
The point format id the point record should have
Returns
-------
PackedPointRecord
"""
return PackedPointRecord.zeros(point_count=0, point_format=point_format)
@classmethod
def from_point_record(
cls, other_point_record: "PackedPointRecord", new_point_format: PointFormat
) -> "PackedPointRecord":
"""Construct a new PackedPointRecord from an existing one with the ability to change
to point format while doing so
"""
array = np.zeros_like(other_point_record.array, dtype=new_point_format.dtype())
new_record = cls(array, new_point_format)
new_record.copy_fields_from(other_point_record)
return new_record
@classmethod
def from_buffer(cls, buffer, point_format, count=-1, offset=0):
points_dtype = point_format.dtype()
data = np.frombuffer(buffer, dtype=points_dtype, offset=offset, count=count)
if sys.byteorder == "big":
data.byteswap(inplace=True)
return cls(data, point_format)
def copy_fields_from(self, other_record: "PackedPointRecord") -> None:
"""Tries to copy the values of the current dimensions from other_record"""
for dim_name in self.point_format.dimension_names:
try:
self[dim_name] = np.array(other_record[dim_name])
except ValueError:
pass
def copy(self) -> "PackedPointRecord":
return PackedPointRecord(self.array.copy(), deepcopy(self.point_format))
def memoryview(self) -> memoryview:
return memoryview(self.array)
def resize(self, new_size: int) -> None:
size_diff = new_size - len(self.array)
if size_diff > 0:
self.array = np.append(
self.array, np.zeros(size_diff, dtype=self.array.dtype)
)
elif size_diff < 0:
self.array = self.array[:new_size].copy()
def _append_zeros_if_too_small(self, value):
"""Appends zeros to the points stored if the value we are trying to
fit is bigger
"""
if len(value) > len(self.array):
self.resize(len(value))
def __eq__(self, other):
return self.point_format == other.point_format and np.all(
self.array == other.array
)
def __len__(self):
if self.array.ndim == 0:
return 1
return self.array.shape[0]
def __getitem__(self, item):
"""Gives access to the underlying numpy array
Unpack the dimension if item is the name a sub-field
"""
if isinstance(item, (int, slice, np.ndarray, list, tuple)):
return PackedPointRecord(self.array[item], self.point_format)
try:
item = OLD_LASPY_NAMES[item]
except KeyError:
pass
# 1) Is it a sub field ?
try:
composed_dim, sub_field = self.sub_fields_dict[item]
return dims.SubFieldView(self.array[composed_dim], sub_field.mask)
except KeyError:
pass
# 2) Is it a Scaled Extra Byte Dimension ?
try:
dim_info = self.point_format.dimension_by_name(item)
if dim_info.is_standard is False and dim_info.is_scaled:
assert dim_info.scales is not None and dim_info.offsets is not None
return ScaledArrayView(
self.array[item], dim_info.scales, dim_info.offsets
)
except ValueError:
pass
return self.array[item]
def __setitem__(self, key, value):
"""Sets elements in the array"""
if isinstance(key, (tuple, list)):
if not isinstance(value, np.ndarray):
value = np.asarray(value)
if value.dtype.isbuiltin == 0:
# value is most likely a structured array (dtype = [('name1', 'type1'), ...])
# https://numpy.org/devdocs/reference/generated/numpy.dtype.isbuiltin.html
for name, v_name in zip(key, value.dtype.names):
self[name] = value[v_name]
else:
if len(key) == 1 and value.ndim == 1:
value = value[..., np.newaxis]
for i, name in enumerate(key):
self[name] = value[..., i]
return
self._append_zeros_if_too_small(value)
if isinstance(key, str):
self[key][:] = value
else:
self.array[key] = value
def __getattr__(self, item):
try:
return self[item]
except ValueError:
raise AttributeError("{} is not a valid dimension".format(item)) from None
def validate_dimension_name(self, key: str) -> DimensionNameValidity:
"""Given a name of a dimension this validates it."""
try:
key = OLD_LASPY_NAMES[key]
except KeyError:
pass
if key in self.point_format.dimension_names or key in self.array.dtype.names:
return DimensionNameValidity.Valid
elif key in dims.DIMENSIONS_TO_TYPE:
return DimensionNameValidity.Unsupported
else:
return DimensionNameValidity.Invalid
def __setattr__(self, key, value):
name_validity = self.validate_dimension_name(key)
if name_validity == DimensionNameValidity.Valid:
self[key] = value
elif name_validity == DimensionNameValidity.Unsupported:
raise ValueError(
f"Point format {self.point_format} does not support {key} dimension"
)
else:
super().__setattr__(key, value)
def __repr__(self):
return "<{}(fmt: {}, len: {}, point size: {})>".format(
self.__class__.__name__,
self.point_format,
len(self),
self.point_format.size,
)
def apply_new_scaling(record, scales: np.ndarray, offsets: np.ndarray) -> None:
record["X"] = unscale_dimension(np.asarray(record.x), scales[0], offsets[0])
record["Y"] = unscale_dimension(np.asarray(record.y), scales[1], offsets[1])
record["Z"] = unscale_dimension(np.asarray(record.z), scales[2], offsets[2])
class ScaleAwarePointRecord(PackedPointRecord):
"""A ScaleAwarePointRecord is a point record that knows the scales and offets
to use, and is thus able to get and set the scaled x, y, z coordinates
To create one, use :meth:`.ScaleAwarePointRecord.zeros` or :meth:`.ScaleAwarePointRecord.empty`
"""
def __init__(self, array, point_format, scales, offsets):
super().__init__(array, point_format)
self.scales = np.array(scales)
self.offsets = np.array(offsets)
if self.scales.shape != (3,):
raise ValueError("scales must be an array of 3 elements")
if self.offsets.shape != (3,):
raise ValueError("offsets must be an array of 3 elements")
@staticmethod
def zeros(
point_count, *, point_format=None, scales=None, offsets=None, header=None
):
"""Creates a new point record with all dimensions initialized to zero
Examples
--------
>>> record = ScaleAwarePointRecord.zeros(
... 5, point_format=PointFormat(3), scales=[1.0, 1.0, 1.0], offsets=[0.1, 0.5, 17.5])
>>> len(record)
5
>>> import laspy
>>> hdr = laspy.LasHeader()
>>> record = ScaleAwarePointRecord.zeros(5, header=hdr)
>>> len(record)
5
>>> hdr = laspy.LasHeader()
>>> record = ScaleAwarePointRecord.zeros(5, header=hdr, scales=[1.0, 1.0, 1.0])
Traceback (most recent call last):
ValueError: header argument is mutually exclusive with point_format, scales and offets
>>> record = ScaleAwarePointRecord.zeros(5, point_format=PointFormat(3))
Traceback (most recent call last):
ValueError: You have to provide all 3: point_format, scale and offsets
"""
first_set = (point_format, scales, offsets)
if header is not None:
if any(arg is not None for arg in first_set):
raise ValueError(
"header argument is mutually exclusive with point_format, scales and offets"
)
point_format = header.point_format
scales = header.scales
offsets = header.offsets
else:
if any(arg is None for arg in first_set):
raise ValueError(
"You have to provide all 3: " "point_format, scale and offsets"
)
data = np.zeros(point_count, point_format.dtype())
return ScaleAwarePointRecord(data, point_format, scales, offsets)
@staticmethod
def empty(point_format=None, scales=None, offsets=None, header=None):
"""Creates an empty point record."""
return ScaleAwarePointRecord.zeros(
point_count=0,
point_format=point_format,
scales=scales,
offsets=offsets,
header=header,
)
def change_scaling(self, scales=None, offsets=None) -> None:
"""See :meth:`.LasData.change_scaling`"""
if scales is None:
scales = self.scales
if offsets is None:
offsets = self.offsets
apply_new_scaling(self, scales, offsets)
self.scales = scales
self.offsets = offsets
def __getitem__(self, item):
if isinstance(item, (int, slice, np.ndarray, list, tuple)):
if isinstance(item, (list, tuple)):
# x, y ,z do not really exists in the array, but they are computed from X, Y, Z
item = [
item if item not in ("x", "y", "z") else item.upper()
for item in item
]
return ScaleAwarePointRecord(
self.array[item], self.point_format, self.scales, self.offsets
)
if item == "x":
return ScaledArrayView(self.array["X"], self.scales[0], self.offsets[0])
elif item == "y":
return ScaledArrayView(self.array["Y"], self.scales[1], self.offsets[1])
elif item == "z":
return ScaledArrayView(self.array["Z"], self.scales[2], self.offsets[2])
else:
return super().__getitem__(item)
def __setattr__(self, key, value):
if key in ("x", "y", "z"):
self[key][:] = value
else:
return super().__setattr__(key, value)
|