1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
from typing import List, Iterable, Mapping
from .common import write_varint, sha256
NIL = bytes([0] * 32)
def floor_lg(n: int) -> int:
"""Return floor(log_2(n)) for a positive integer `n`"""
assert n > 0
r = 0
t = 1
while 2 * t <= n:
t = 2 * t
r = r + 1
return r
def ceil_lg(n: int) -> int:
"""Return ceiling(log_2(n)) for a positive integer `n`."""
assert n > 0
r = 0
t = 1
while t < n:
t = 2 * t
r = r + 1
return r
def is_power_of_2(n: int) -> bool:
"""For a positive integer `n`, returns `True` is `n` is a perfect power of 2, `False` otherwise."""
assert n >= 1
return n & (n - 1) == 0
def largest_power_of_2_less_than(n: int) -> int:
"""For an integer `n` which is at least 2, returns the largest exact power of 2 that is strictly less than `n`."""
assert n > 1
if is_power_of_2(n):
return n // 2
else:
return 1 << floor_lg(n)
def element_hash(element_preimage: bytes) -> bytes:
"""Computes the hash of an element to be stored in the Merkle tree."""
return sha256(b'\x00' + element_preimage)
def combine_hashes(left: bytes, right: bytes) -> bytes:
if len(left) != 32 or len(right) != 32:
raise ValueError("The elements must be 32-bytes sha256 outputs.")
return sha256(b'\x01' + left + right)
# root is the only node with parent == None
# leaves have left == right == None
class Node:
def __init__(self, left, right, parent, value: bytes):
self.left = left
self.right = right
self.parent = parent
self.value = value
def recompute_value(self):
assert self.left is not None
assert self.right is not None
self.value = combine_hashes(self.left.value, self.right.value)
def sibling(self):
if self.parent is None:
raise IndexError("The root does not have a sibling.")
if self.parent.left == self:
return self.parent.right
elif self.parent.right == self:
return self.parent.left
else:
raise IndexError("Invalid state: not a child of his parent.")
def make_tree(leaves: List[Node], begin: int, size: int) -> Node:
"""Given a list of nodes, builds the left-complete Merkle tree on top of it.
The nodes in `leaves` are modified by setting their `parent` field appropriately.
It returns the root of the newly built tree.
"""
if size == 0:
return []
if size == 1:
return leaves[begin]
lchild_size = largest_power_of_2_less_than(size)
lchild = make_tree(leaves, begin, lchild_size)
rchild = make_tree(leaves, begin + lchild_size, size - lchild_size)
root = Node(lchild, rchild, None, None)
root.recompute_value()
lchild.parent = rchild.parent = root
return root
class MerkleTree:
"""
Maintains a dynamic vector of values and the Merkle tree built on top of it. The elements of the vector are stored
as the leaves of a binary tree. It is possible to add a new element to the vector, or change an existing element;
the hashes in the Merkle tree will be recomputed after each operation in O(log n) time, for a vector with n
elements.
The value of each internal node is the hash of the concatenation of:
- a single byte 0x01;
- the values of the left child;
- the value of the right child.
The binary tree has the following properties (assuming the vector contains n leaves):
- There are always n - 1 internal nodes; all the internal nodes have exactly two children.
- If a subtree has n > 1 leaves, then the left subchild is a complete subtree with p leaves, where p is the largest
power of 2 smaller than n.
"""
def __init__(self, elements: Iterable[bytes] = []):
self.leaves = [Node(None, None, None, el) for el in elements]
n_elements = len(self.leaves)
if n_elements > 0:
self.root_node = make_tree(self.leaves, 0, n_elements)
self.depth = ceil_lg(n_elements)
else:
self.root_node = None
self.depth = None
def __len__(self) -> int:
"""Return the total number of leaves in the tree."""
return len(self.leaves)
@property
def root(self) -> bytes:
"""Return the Merkle root, or None if the tree is empty."""
return NIL if self.root_node is None else self.root_node.value
def copy(self):
"""Return an identical copy of this Merkle tree."""
return MerkleTree([leaf.value for leaf in self.leaves])
def add(self, x: bytes) -> None:
"""Add an element as new leaf, and recompute the tree accordingly. Cost O(log n)."""
if len(x) != 32:
raise ValueError("Inserted elements must be exactly 32 bytes long")
new_leaf = Node(None, None, None, x)
self.leaves.append(new_leaf)
if len(self.leaves) == 1:
self.root_node = new_leaf
self.depth = 0
return
# add a new leaf
if self.depth == 0:
ltree_size = 0
else:
# number of leaves of the left subtree of cur_root
ltree_size = 1 << (self.depth - 1)
cur_root = self.root_node
cur_root_size = len(self.leaves) - 1
while not is_power_of_2(cur_root_size):
cur_root = cur_root.right
cur_root_size -= ltree_size
ltree_size /= 2
# node value will be computed later
new_node = Node(cur_root, new_leaf, cur_root.parent, None)
if cur_root.parent is None:
# replacing the root
self.depth += 1
self.root_node = new_node
else:
assert cur_root.parent.right == cur_root
cur_root.parent.right = new_node
cur_root.parent = new_node
new_leaf.parent = new_node
self.fix_up(new_node)
def set(self, index: int, x: bytes) -> None:
"""
Set the value of the leaf at position `index` to `x`, recomputing the tree accordingly.
If `index` equals the current number of leaves, then it is equivalent to `add(x)`.
Cost: Worst case O(log n).
"""
assert 0 <= index <= len(self.leaves)
if not (0 <= index <= len(self.leaves)):
raise ValueError(
"The index must be at least 0, and at most the current number of leaves.")
if len(x) != 32:
raise ValueError("Inserted elements must be exactly 32 bytes long.")
if index == len(self.leaves):
self.add(x)
else:
self.leaves[index].value = x
self.fix_up(self.leaves[index].parent)
def fix_up(self, node: Node):
while node is not None:
node.recompute_value()
node = node.parent
def get(self, i: int) -> bytes:
"""Return the value of the leaf with index `i`, where 0 <= i < len(self)."""
return self.leaves[i].value
def leaf_index(self, x: bytes) -> int:
"""Return the index of the leaf with hash `x`. Raises `ValueError` if not found."""
idx = 0
while idx < len(self):
if self.leaves[idx].value == x:
return idx
idx += 1
raise ValueError("Leaf not found")
def prove_leaf(self, index: int) -> List[bytes]:
"""Produce the Merkle proof of membership for the leaf with the given index where 0 <= index < len(self)."""
node = self.leaves[index]
proof = []
while node.parent is not None:
sibling = node.sibling()
assert sibling is not None
proof.append(sibling.value)
node = node.parent
return proof
def get_merkleized_map_commitment(mapping: Mapping[bytes, bytes]) -> bytes:
"""Returns a serialized Merkleized map commitment, encoded as the concatenation of:
- the number of key/value pairs, as a Bitcoin-style varint;
- the root of the Merkle tree of the keys
- the root of the Merkle tree of the values.
"""
items_sorted = list(sorted(mapping.items()))
keys_hashes = [element_hash(i[0]) for i in items_sorted]
values_hashes = [element_hash(i[1]) for i in items_sorted]
return write_varint(len(mapping)) + MerkleTree(keys_hashes).root + MerkleTree(values_hashes).root
|