1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
# extracted from the BIP327 reference implementation: https://github.com/bitcoin/bips/blob/b3701faef2bdb98a0d7ace4eedbeefa2da4c89ed/bip-0327/reference.py
# Only contains the key aggregation part of the library
# The code in this source file is distributed under the BSD-3-Clause.
# autopep8: off
from typing import List, Optional, Tuple, NewType, NamedTuple
import hashlib
#
# The following helper functions were copied from the BIP-340 reference implementation:
# https://github.com/bitcoin/bips/blob/master/bip-0340/reference.py
#
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# Points are tuples of X and Y coordinates and the point at infinity is
# represented by the None keyword.
G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
Point = Tuple[int, int]
# This implementation can be sped up by storing the midstate after hashing
# tag_hash instead of rehashing it all the time.
def tagged_hash(tag: str, msg: bytes) -> bytes:
tag_hash = hashlib.sha256(tag.encode()).digest()
return hashlib.sha256(tag_hash + tag_hash + msg).digest()
def is_infinite(P: Optional[Point]) -> bool:
return P is None
def x(P: Point) -> int:
assert not is_infinite(P)
return P[0]
def y(P: Point) -> int:
assert not is_infinite(P)
return P[1]
def point_add(P1: Optional[Point], P2: Optional[Point]) -> Optional[Point]:
if P1 is None:
return P2
if P2 is None:
return P1
if (x(P1) == x(P2)) and (y(P1) != y(P2)):
return None
if P1 == P2:
lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
else:
lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
x3 = (lam * lam - x(P1) - x(P2)) % p
return (x3, (lam * (x(P1) - x3) - y(P1)) % p)
def point_mul(P: Optional[Point], n: int) -> Optional[Point]:
R = None
for i in range(256):
if (n >> i) & 1:
R = point_add(R, P)
P = point_add(P, P)
return R
def bytes_from_int(x: int) -> bytes:
return x.to_bytes(32, byteorder="big")
def lift_x(b: bytes) -> Optional[Point]:
x = int_from_bytes(b)
if x >= p:
return None
y_sq = (pow(x, 3, p) + 7) % p
y = pow(y_sq, (p + 1) // 4, p)
if pow(y, 2, p) != y_sq:
return None
return (x, y if y & 1 == 0 else p-y)
def int_from_bytes(b: bytes) -> int:
return int.from_bytes(b, byteorder="big")
def has_even_y(P: Point) -> bool:
assert not is_infinite(P)
return y(P) % 2 == 0
#
# End of helper functions copied from BIP-340 reference implementation.
#
PlainPk = NewType('PlainPk', bytes)
XonlyPk = NewType('XonlyPk', bytes)
# There are two types of exceptions that can be raised by this implementation:
# - ValueError for indicating that an input doesn't conform to some function
# precondition (e.g. an input array is the wrong length, a serialized
# representation doesn't have the correct format).
# - InvalidContributionError for indicating that a signer (or the
# aggregator) is misbehaving in the protocol.
#
# Assertions are used to (1) satisfy the type-checking system, and (2) check for
# inconvenient events that can't happen except with negligible probability (e.g.
# output of a hash function is 0) and can't be manually triggered by any
# signer.
# This exception is raised if a party (signer or nonce aggregator) sends invalid
# values. Actual implementations should not crash when receiving invalid
# contributions. Instead, they should hold the offending party accountable.
class InvalidContributionError(Exception):
def __init__(self, signer, contrib):
self.signer = signer
# contrib is one of "pubkey", "pubnonce", "aggnonce", or "psig".
self.contrib = contrib
infinity = None
def xbytes(P: Point) -> bytes:
return bytes_from_int(x(P))
def cbytes(P: Point) -> bytes:
a = b'\x02' if has_even_y(P) else b'\x03'
return a + xbytes(P)
def point_negate(P: Optional[Point]) -> Optional[Point]:
if P is None:
return P
return (x(P), p - y(P))
def cpoint(x: bytes) -> Point:
if len(x) != 33:
raise ValueError('x is not a valid compressed point.')
P = lift_x(x[1:33])
if P is None:
raise ValueError('x is not a valid compressed point.')
if x[0] == 2:
return P
elif x[0] == 3:
P = point_negate(P)
assert P is not None
return P
else:
raise ValueError('x is not a valid compressed point.')
KeyAggContext = NamedTuple('KeyAggContext', [('Q', Point),
('gacc', int),
('tacc', int)])
def key_agg(pubkeys: List[PlainPk]) -> KeyAggContext:
pk2 = get_second_key(pubkeys)
u = len(pubkeys)
Q = infinity
for i in range(u):
try:
P_i = cpoint(pubkeys[i])
except ValueError:
raise InvalidContributionError(i, "pubkey")
a_i = key_agg_coeff_internal(pubkeys, pubkeys[i], pk2)
Q = point_add(Q, point_mul(P_i, a_i))
# Q is not the point at infinity except with negligible probability.
assert(Q is not None)
gacc = 1
tacc = 0
return KeyAggContext(Q, gacc, tacc)
def hash_keys(pubkeys: List[PlainPk]) -> bytes:
return tagged_hash('KeyAgg list', b''.join(pubkeys))
def get_second_key(pubkeys: List[PlainPk]) -> PlainPk:
u = len(pubkeys)
for j in range(1, u):
if pubkeys[j] != pubkeys[0]:
return pubkeys[j]
return PlainPk(b'\x00'*33)
def key_agg_coeff_internal(pubkeys: List[PlainPk], pk_: PlainPk, pk2: PlainPk) -> int:
L = hash_keys(pubkeys)
if pk_ == pk2:
return 1
return int_from_bytes(tagged_hash('KeyAgg coefficient', L + pk_)) % n
|