File: bip0327.py

package info (click to toggle)
python-ledger-bitcoin 0.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 720 kB
  • sloc: python: 9,357; makefile: 2
file content (177 lines) | stat: -rw-r--r-- 5,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# extracted from the BIP327 reference implementation: https://github.com/bitcoin/bips/blob/b3701faef2bdb98a0d7ace4eedbeefa2da4c89ed/bip-0327/reference.py

# Only contains the key aggregation part of the library

# The code in this source file is distributed under the BSD-3-Clause.

# autopep8: off

from typing import List, Optional, Tuple, NewType, NamedTuple
import hashlib

#
# The following helper functions were copied from the BIP-340 reference implementation:
# https://github.com/bitcoin/bips/blob/master/bip-0340/reference.py
#

p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

# Points are tuples of X and Y coordinates and the point at infinity is
# represented by the None keyword.
G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)

Point = Tuple[int, int]

# This implementation can be sped up by storing the midstate after hashing
# tag_hash instead of rehashing it all the time.
def tagged_hash(tag: str, msg: bytes) -> bytes:
    tag_hash = hashlib.sha256(tag.encode()).digest()
    return hashlib.sha256(tag_hash + tag_hash + msg).digest()

def is_infinite(P: Optional[Point]) -> bool:
    return P is None

def x(P: Point) -> int:
    assert not is_infinite(P)
    return P[0]

def y(P: Point) -> int:
    assert not is_infinite(P)
    return P[1]

def point_add(P1: Optional[Point], P2: Optional[Point]) -> Optional[Point]:
    if P1 is None:
        return P2
    if P2 is None:
        return P1
    if (x(P1) == x(P2)) and (y(P1) != y(P2)):
        return None
    if P1 == P2:
        lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
    else:
        lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
    x3 = (lam * lam - x(P1) - x(P2)) % p
    return (x3, (lam * (x(P1) - x3) - y(P1)) % p)

def point_mul(P: Optional[Point], n: int) -> Optional[Point]:
    R = None
    for i in range(256):
        if (n >> i) & 1:
            R = point_add(R, P)
        P = point_add(P, P)
    return R

def bytes_from_int(x: int) -> bytes:
    return x.to_bytes(32, byteorder="big")

def lift_x(b: bytes) -> Optional[Point]:
    x = int_from_bytes(b)
    if x >= p:
        return None
    y_sq = (pow(x, 3, p) + 7) % p
    y = pow(y_sq, (p + 1) // 4, p)
    if pow(y, 2, p) != y_sq:
        return None
    return (x, y if y & 1 == 0 else p-y)

def int_from_bytes(b: bytes) -> int:
    return int.from_bytes(b, byteorder="big")

def has_even_y(P: Point) -> bool:
    assert not is_infinite(P)
    return y(P) % 2 == 0

#
# End of helper functions copied from BIP-340 reference implementation.
#

PlainPk = NewType('PlainPk', bytes)
XonlyPk = NewType('XonlyPk', bytes)

# There are two types of exceptions that can be raised by this implementation:
#   - ValueError for indicating that an input doesn't conform to some function
#     precondition (e.g. an input array is the wrong length, a serialized
#     representation doesn't have the correct format).
#   - InvalidContributionError for indicating that a signer (or the
#     aggregator) is misbehaving in the protocol.
#
# Assertions are used to (1) satisfy the type-checking system, and (2) check for
# inconvenient events that can't happen except with negligible probability (e.g.
# output of a hash function is 0) and can't be manually triggered by any
# signer.

# This exception is raised if a party (signer or nonce aggregator) sends invalid
# values. Actual implementations should not crash when receiving invalid
# contributions. Instead, they should hold the offending party accountable.
class InvalidContributionError(Exception):
    def __init__(self, signer, contrib):
        self.signer = signer
        # contrib is one of "pubkey", "pubnonce", "aggnonce", or "psig".
        self.contrib = contrib

infinity = None

def xbytes(P: Point) -> bytes:
    return bytes_from_int(x(P))

def cbytes(P: Point) -> bytes:
    a = b'\x02' if has_even_y(P) else b'\x03'
    return a + xbytes(P)

def point_negate(P: Optional[Point]) -> Optional[Point]:
    if P is None:
        return P
    return (x(P), p - y(P))

def cpoint(x: bytes) -> Point:
    if len(x) != 33:
        raise ValueError('x is not a valid compressed point.')
    P = lift_x(x[1:33])
    if P is None:
        raise ValueError('x is not a valid compressed point.')
    if x[0] == 2:
        return P
    elif x[0] == 3:
        P = point_negate(P)
        assert P is not None
        return P
    else:
        raise ValueError('x is not a valid compressed point.')

KeyAggContext = NamedTuple('KeyAggContext', [('Q', Point),
                                             ('gacc', int),
                                             ('tacc', int)])

def key_agg(pubkeys: List[PlainPk]) -> KeyAggContext:
    pk2 = get_second_key(pubkeys)
    u = len(pubkeys)
    Q = infinity
    for i in range(u):
        try:
            P_i = cpoint(pubkeys[i])
        except ValueError:
            raise InvalidContributionError(i, "pubkey")
        a_i = key_agg_coeff_internal(pubkeys, pubkeys[i], pk2)
        Q = point_add(Q, point_mul(P_i, a_i))
    # Q is not the point at infinity except with negligible probability.
    assert(Q is not None)
    gacc = 1
    tacc = 0
    return KeyAggContext(Q, gacc, tacc)

def hash_keys(pubkeys: List[PlainPk]) -> bytes:
    return tagged_hash('KeyAgg list', b''.join(pubkeys))

def get_second_key(pubkeys: List[PlainPk]) -> PlainPk:
    u = len(pubkeys)
    for j in range(1, u):
        if pubkeys[j] != pubkeys[0]:
            return pubkeys[j]
    return PlainPk(b'\x00'*33)

def key_agg_coeff_internal(pubkeys: List[PlainPk], pk_: PlainPk, pk2: PlainPk) -> int:
    L = hash_keys(pubkeys)
    if pk_ == pk2:
        return 1
    return int_from_bytes(tagged_hash('KeyAgg coefficient', L + pk_)) % n