1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
from . import base58
from . import hashes
from .misc import secp256k1
from .networks import NETWORKS
from .base import EmbitBase, EmbitError, EmbitKey
from binascii import hexlify, unhexlify
class ECError(EmbitError):
pass
class Signature(EmbitBase):
def __init__(self, sig):
self._sig = sig
def write_to(self, stream) -> int:
return stream.write(secp256k1.ecdsa_signature_serialize_der(self._sig))
@classmethod
def read_from(cls, stream):
der = stream.read(2)
der += stream.read(der[1])
return cls(secp256k1.ecdsa_signature_parse_der(der))
class SchnorrSig(EmbitBase):
def __init__(self, sig):
assert len(sig) == 64
self._sig = sig
def write_to(self, stream) -> int:
return stream.write(self._sig)
@classmethod
def read_from(cls, stream):
return cls(stream.read(64))
class PublicKey(EmbitKey):
def __init__(self, point: bytes, compressed: bool = True):
self._point = point
self.compressed = compressed
@classmethod
def read_from(cls, stream):
b = stream.read(1)
if b not in [b"\x02", b"\x03", b"\x04"]:
raise ECError("Invalid public key")
if b == b"\x04":
b += stream.read(64)
else:
b += stream.read(32)
try:
point = secp256k1.ec_pubkey_parse(b)
except Exception as e:
raise ECError(str(e))
compressed = b[0] != 0x04
return cls(point, compressed)
def sec(self) -> bytes:
"""Sec representation of the key"""
flag = secp256k1.EC_COMPRESSED if self.compressed else secp256k1.EC_UNCOMPRESSED
return secp256k1.ec_pubkey_serialize(self._point, flag)
def xonly(self) -> bytes:
return self.sec()[1:33]
def taproot_tweak(self, h=b""):
"""Returns a tweaked public key"""
x = self.xonly()
tweak = hashes.tagged_hash("TapTweak", x + h)
if not secp256k1.ec_seckey_verify(tweak):
raise EmbitError("Tweak is too large")
point = secp256k1.ec_pubkey_parse(b"\x02" + x)
pub = secp256k1.ec_pubkey_add(point, tweak)
sec = secp256k1.ec_pubkey_serialize(pub)
return PublicKey.from_xonly(sec[1:33])
def write_to(self, stream) -> int:
return stream.write(self.sec())
def serialize(self) -> bytes:
return self.sec()
def verify(self, sig, msg_hash) -> bool:
return bool(secp256k1.ecdsa_verify(sig._sig, msg_hash, self._point))
def _xonly(self):
"""Returns internal representation of the xonly-pubkey (64 bytes)"""
pub, _ = secp256k1.xonly_pubkey_from_pubkey(self._point)
return pub
@classmethod
def from_xonly(cls, data: bytes):
assert len(data) == 32
return cls.parse(b"\x02" + data)
def schnorr_verify(self, sig, msg_hash) -> bool:
return bool(secp256k1.schnorrsig_verify(sig._sig, msg_hash, self._xonly()))
@classmethod
def from_string(cls, s):
return cls.parse(unhexlify(s))
@property
def is_private(self) -> bool:
return False
def to_string(self):
return hexlify(self.sec()).decode()
def __lt__(self, other):
# for lexagraphic ordering
return self.sec() < other.sec()
def __gt__(self, other):
# for lexagraphic ordering
return self.sec() > other.sec()
def __eq__(self, other):
return self.sec() == other.sec()
def __hash__(self):
return hash(self._point)
class PrivateKey(EmbitKey):
def __init__(self, secret, compressed: bool = True, network=NETWORKS["main"]):
"""Creates a private key from 32-byte array"""
if len(secret) != 32:
raise ECError("Secret should be 32-byte array")
if not secp256k1.ec_seckey_verify(secret):
raise ECError("Secret is not valid (larger then N?)")
self.compressed = compressed
self._secret = secret
self.network = network
def wif(self, network=None) -> str:
"""Export private key as Wallet Import Format string.
Prefix 0x80 is used for mainnet, 0xEF for testnet.
This class doesn't store this information though.
"""
if network is None:
network = self.network
prefix = network["wif"]
b = prefix + self._secret
if self.compressed:
b += bytes([0x01])
return base58.encode_check(b)
@property
def secret(self):
return self._secret
def sec(self) -> bytes:
"""Sec representation of the corresponding public key"""
return self.get_public_key().sec()
def xonly(self) -> bytes:
return self.sec()[1:]
def taproot_tweak(self, h=b""):
"""Returns a tweaked private key"""
sec = self.sec()
negate = sec[0] != 0x02
x = sec[1:33]
tweak = hashes.tagged_hash("TapTweak", x + h)
if not secp256k1.ec_seckey_verify(tweak):
raise EmbitError("Tweak is too large")
if negate:
secret = secp256k1.ec_privkey_negate(self._secret)
else:
secret = self._secret
res = secp256k1.ec_privkey_add(secret, tweak)
pk = PrivateKey(res)
if pk.sec()[0] == 0x03:
pk = PrivateKey(secp256k1.ec_privkey_negate(res))
return pk
@classmethod
def from_wif(cls, s):
"""Import private key from Wallet Import Format string."""
b = base58.decode_check(s)
prefix = b[:1]
network = None
for net in NETWORKS:
if NETWORKS[net]["wif"] == prefix:
network = NETWORKS[net]
secret = b[1:33]
compressed = False
if len(b) not in [33, 34]:
raise ECError("Wrong WIF length")
if len(b) == 34:
if b[-1] == 0x01:
compressed = True
else:
raise ECError("Wrong WIF compressed flag")
return cls(secret, compressed, network)
# to unify API
def to_base58(self, network=None) -> str:
return self.wif(network)
@classmethod
def from_base58(cls, s):
return cls.from_wif(s)
def get_public_key(self) -> PublicKey:
return PublicKey(secp256k1.ec_pubkey_create(self._secret), self.compressed)
def to_public(self) -> PublicKey:
"""Alias to get_public_key for API consistency"""
return self.get_public_key()
def sign(self, msg_hash, grind=True) -> Signature:
sig = Signature(secp256k1.ecdsa_sign(msg_hash, self._secret))
if grind:
counter = 1
while len(sig.serialize()) > 70:
sig = Signature(
secp256k1.ecdsa_sign(
msg_hash, self._secret, None, counter.to_bytes(32, "little")
)
)
counter += 1
# just in case we get in infinite loop for some reason
if counter > 200:
break
return sig
def schnorr_sign(self, msg_hash) -> SchnorrSig:
return SchnorrSig(secp256k1.schnorrsig_sign(msg_hash, self._secret))
def verify(self, sig, msg_hash) -> bool:
return self.get_public_key().verify(sig, msg_hash)
def schnorr_verify(self, sig, msg_hash) -> bool:
return self.get_public_key().schnorr_verify(sig, msg_hash)
def write_to(self, stream) -> int:
# return a copy of the secret
return stream.write(self._secret)
def ecdh(self, public_key: PublicKey, hashfn=None, data=None) -> bytes:
pubkey_point = secp256k1.ec_pubkey_parse(public_key.sec())
return secp256k1.ecdh(pubkey_point, self._secret, hashfn, data)
@classmethod
def read_from(cls, stream):
# just to unify the API
return cls(stream.read(32))
@property
def is_private(self) -> bool:
return True
# Nothing up my sleeve point for no-internal-key taproot
# see https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki#constructing-and-spending-taproot-outputs
NUMS_PUBKEY = PublicKey.from_string(
"0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0"
)
|