1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
import unittest
import igraph as ig
import leidenalg
import random
from copy import deepcopy
from ddt import ddt, data, unpack
#%%
def name_object(obj, name):
obj.__name__ = name
return obj
graphs = [
###########################################################################
# Zachary karate network
name_object(ig.Graph.Famous('Zachary'),
'Zachary'),
###########################################################################
# ER Networks
# Undirected no loop
name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=False, loops=False),
'ER_k1_undirected_no_loops'),
name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=False, loops=False),
'ER_k5_undirected_no_loops'),
# Directed no loop
name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=True, loops=False),
'ER_k1_directed_no_loops'),
name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=True, loops=False),
'ER_k5_directed_no_loops'),
# Undirected loops
name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=False, loops=True),
'ER_k1_undirected_loops'),
name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=False, loops=True),
'ER_k5_undirected_loops'),
# Directed loops
name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=True, loops=True),
'ER_k1_directed_loops'),
name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=True, loops=True),
'ER_k5_directed_loops'),
###########################################################################
# Tree
name_object(ig.Graph.Tree(100, 3, mode='undirected'),
'Tree_undirected'),
name_object(ig.Graph.Tree(100, 3, mode='out'),
'Tree_directed_out'),
name_object(ig.Graph.Tree(100, 3, mode='in'),
'Tree_directed_in'),
###########################################################################
# Lattice
name_object(ig.Graph.Lattice([100], nei=3, directed=False, mutual=True, circular=True),
'Lattice_undirected'),
name_object(ig.Graph.Lattice([100], nei=3, directed=True, mutual=False, circular=True),
'Lattice_directed')
]
bipartite_graph = name_object(
ig.Graph.Bipartite([0, 0, 0, 0, 1, 1, 1, 1],
[[0, 4],
[0, 5],
[0, 6],
[1, 4],
[1, 5],
[2, 6],
[2, 7],
[3, 6],
[3, 7],
[3, 5]]),
'bipartite_example')
def make_weighted(G):
m = G.ecount()
G.es['weight'] = [random.random() for i in range(G.ecount())]
G.__name__ += '_weighted'
return G
graphs += [make_weighted(H) for H in graphs]
class BaseTest:
@ddt
class MutableVertexPartitionTest(unittest.TestCase):
def setUp(self):
self.optimiser = leidenalg.Optimiser()
@data(*graphs)
def test_move_nodes(self, graph):
if 'weight' in graph.es.attributes() and self.partition_type == leidenalg.SignificanceVertexPartition:
raise unittest.SkipTest('Significance doesn\'t handle weighted graphs')
if 'weight' in graph.es.attributes():
partition = self.partition_type(graph, weights='weight')
else:
partition = self.partition_type(graph)
for v in range(graph.vcount()):
if graph.degree(v) >= 1:
u = graph.neighbors(v)[0]
diff = partition.diff_move(v, partition.membership[u])
q1 = partition.quality()
partition.move_node(v, partition.membership[u])
q2 = partition.quality()
self.assertAlmostEqual(
q2 - q1,
diff,
places=5,
msg="Difference in quality ({0}) not equal to calculated difference ({1})".format(
q2 - q1, diff))
@data(*graphs)
def test_aggregate_partition(self, graph):
if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
partition = self.partition_type(graph, weights='weight')
else:
partition = self.partition_type(graph)
self.optimiser.move_nodes(partition)
aggregate_partition = partition.aggregate_partition()
self.assertAlmostEqual(
partition.quality(),
aggregate_partition.quality(),
places=5,
msg='Quality not equal for aggregate partition.')
self.optimiser.move_nodes(aggregate_partition)
partition.from_coarse_partition(aggregate_partition)
self.assertAlmostEqual(
partition.quality(),
aggregate_partition.quality(),
places=5,
msg='Quality not equal from coarser partition.')
@data(*graphs)
def test_total_weight_in_all_comms(self, graph):
if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
partition = self.partition_type(graph, weights='weight')
else:
partition = self.partition_type(graph)
self.optimiser.optimise_partition(partition)
s = sum([partition.total_weight_in_comm(c) for c,_ in enumerate(partition)])
self.assertAlmostEqual(
s,
partition.total_weight_in_all_comms(),
places=5,
msg='Total weight in all communities ({0}) not equal to the sum of the weight in all communities ({1}).'.format(
s, partition.total_weight_in_all_comms())
)
@data(*graphs)
def test_copy(self, graph):
if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
partition = self.partition_type(graph, weights='weight')
else:
partition = self.partition_type(graph)
self.optimiser.optimise_partition(partition)
partition2 = deepcopy(partition)
self.assertAlmostEqual(
partition.quality(),
partition2.quality(),
places=5,
msg='Quality of deepcopy ({0}) not equal to quality of original partition ({1}).'.format(
partition.quality(), partition2.quality())
)
if (partition2.membership[0] == 0):
partition2.move_node(0, 1)
else:
partition2.move_node(0, 0)
self.assertNotEqual(
partition.membership[0],
partition2.membership[0],
msg='Moving node 0 in the deepcopy to community {0} results in community membership {1} for node 0 also in original partition.'.format(
partition.membership[0], partition2.membership[0])
)
class ModularityVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(ModularityVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.ModularityVertexPartition
class RBERVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(RBERVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.RBERVertexPartition
class RBConfigurationVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(RBConfigurationVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.RBConfigurationVertexPartition
class CPMVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(CPMVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.CPMVertexPartition
def test_Bipartite(self):
graph = bipartite_graph
partition, partition_0, partition_1 = \
leidenalg.CPMVertexPartition.Bipartite(graph, resolution_parameter_01=0.2)
self.optimiser.optimise_partition_multiplex(
[partition, partition_0, partition_1],
layer_weights=[1, -1, -1])
self.assertEqual(len(partition), 1)
class SurpriseVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(SurpriseVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.SurpriseVertexPartition
class SignificanceVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
def setUp(self):
super(SignificanceVertexPartitionTest, self).setUp()
self.partition_type = leidenalg.SignificanceVertexPartition
#%%
if __name__ == '__main__':
#%%
unittest.main(verbosity=3)
suite = unittest.TestLoader().discover('.')
unittest.TextTestRunner(verbosity=1).run(suite)
|