File: test_VertexPartition.py

package info (click to toggle)
python-leidenalg 0.10.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,020 kB
  • sloc: cpp: 1,727; python: 1,268; ansic: 237; sh: 97; makefile: 7
file content (226 lines) | stat: -rw-r--r-- 8,473 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import unittest
import igraph as ig
import leidenalg
import random
from copy import deepcopy

from ddt import ddt, data, unpack

#%%

def name_object(obj, name):
  obj.__name__ = name
  return obj

graphs = [
    ###########################################################################
    # Zachary karate network
    name_object(ig.Graph.Famous('Zachary'),
                'Zachary'),

    ###########################################################################
    # ER Networks
    # Undirected no loop
    name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=False, loops=False),
                'ER_k1_undirected_no_loops'),
    name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=False, loops=False),
                'ER_k5_undirected_no_loops'),
    # Directed no loop
    name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=True, loops=False),
                'ER_k1_directed_no_loops'),
    name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=True, loops=False),
                'ER_k5_directed_no_loops'),
    # Undirected loops
    name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=False, loops=True),
                'ER_k1_undirected_loops'),
    name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=False, loops=True),
                'ER_k5_undirected_loops'),
    # Directed loops
    name_object(ig.Graph.Erdos_Renyi(100, p=1./100, directed=True, loops=True),
                'ER_k1_directed_loops'),
    name_object(ig.Graph.Erdos_Renyi(100, p=5./100, directed=True, loops=True),
                'ER_k5_directed_loops'),

    ###########################################################################
    # Tree
    name_object(ig.Graph.Tree(100, 3, mode='undirected'),
                'Tree_undirected'),
    name_object(ig.Graph.Tree(100, 3, mode='out'),
                'Tree_directed_out'),
    name_object(ig.Graph.Tree(100, 3, mode='in'),
                'Tree_directed_in'),

    ###########################################################################
    # Lattice
    name_object(ig.Graph.Lattice([100], nei=3, directed=False, mutual=True, circular=True),
                'Lattice_undirected'),
    name_object(ig.Graph.Lattice([100], nei=3, directed=True, mutual=False, circular=True),
                'Lattice_directed')
    ]

bipartite_graph = name_object(
    ig.Graph.Bipartite([0, 0, 0, 0, 1, 1, 1, 1],
                       [[0, 4],
                        [0, 5],
                        [0, 6],
                        [1, 4],
                        [1, 5],
                        [2, 6],
                        [2, 7],
                        [3, 6],
                        [3, 7],
                        [3, 5]]),
              'bipartite_example')

def make_weighted(G):
  m = G.ecount()
  G.es['weight'] = [random.random() for i in range(G.ecount())]
  G.__name__ += '_weighted'
  return G

graphs += [make_weighted(H) for H in graphs]

class BaseTest:
  @ddt
  class MutableVertexPartitionTest(unittest.TestCase):

    def setUp(self):
      self.optimiser = leidenalg.Optimiser()

    @data(*graphs)
    def test_move_nodes(self, graph):
      if 'weight' in graph.es.attributes() and self.partition_type == leidenalg.SignificanceVertexPartition:
        raise unittest.SkipTest('Significance doesn\'t handle weighted graphs')

      if 'weight' in graph.es.attributes():
        partition = self.partition_type(graph, weights='weight')
      else:
        partition = self.partition_type(graph)
      for v in range(graph.vcount()):
        if graph.degree(v) >= 1:
          u = graph.neighbors(v)[0]
          diff = partition.diff_move(v, partition.membership[u])
          q1 = partition.quality()
          partition.move_node(v, partition.membership[u])
          q2 = partition.quality()
          self.assertAlmostEqual(
              q2 - q1,
              diff,
              places=5,
              msg="Difference in quality ({0}) not equal to calculated difference ({1})".format(
              q2 - q1, diff))

    @data(*graphs)
    def test_aggregate_partition(self, graph):
      if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
        partition = self.partition_type(graph, weights='weight')
      else:
        partition = self.partition_type(graph)
      self.optimiser.move_nodes(partition)
      aggregate_partition = partition.aggregate_partition()
      self.assertAlmostEqual(
          partition.quality(),
          aggregate_partition.quality(),
          places=5,
          msg='Quality not equal for aggregate partition.')
      self.optimiser.move_nodes(aggregate_partition)
      partition.from_coarse_partition(aggregate_partition)
      self.assertAlmostEqual(
          partition.quality(),
          aggregate_partition.quality(),
          places=5,
          msg='Quality not equal from coarser partition.')

    @data(*graphs)
    def test_total_weight_in_all_comms(self, graph):
      if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
        partition = self.partition_type(graph, weights='weight')
      else:
        partition = self.partition_type(graph)
      self.optimiser.optimise_partition(partition)
      s = sum([partition.total_weight_in_comm(c) for c,_ in enumerate(partition)])
      self.assertAlmostEqual(
        s,
        partition.total_weight_in_all_comms(),
        places=5,
        msg='Total weight in all communities ({0}) not equal to the sum of the weight in all communities ({1}).'.format(
          s, partition.total_weight_in_all_comms())
        )

    @data(*graphs)
    def test_copy(self, graph):
      if 'weight' in graph.es.attributes() and self.partition_type != leidenalg.SignificanceVertexPartition:
        partition = self.partition_type(graph, weights='weight')
      else:
        partition = self.partition_type(graph)

      self.optimiser.optimise_partition(partition)

      partition2 = deepcopy(partition)

      self.assertAlmostEqual(
        partition.quality(),
        partition2.quality(),
        places=5,
        msg='Quality of deepcopy ({0}) not equal to quality of original partition ({1}).'.format(
          partition.quality(), partition2.quality())
        )

      if (partition2.membership[0] == 0):
        partition2.move_node(0, 1)
      else:
        partition2.move_node(0, 0)

      self.assertNotEqual(
        partition.membership[0],
        partition2.membership[0],
        msg='Moving node 0 in the deepcopy to community {0} results in community membership {1} for node 0 also in original partition.'.format(
          partition.membership[0], partition2.membership[0])
        )


class ModularityVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(ModularityVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.ModularityVertexPartition

class RBERVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(RBERVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.RBERVertexPartition

class RBConfigurationVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(RBConfigurationVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.RBConfigurationVertexPartition

class CPMVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(CPMVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.CPMVertexPartition

  def test_Bipartite(self):
    graph = bipartite_graph
    partition, partition_0, partition_1 = \
        leidenalg.CPMVertexPartition.Bipartite(graph, resolution_parameter_01=0.2)
    self.optimiser.optimise_partition_multiplex(
            [partition, partition_0, partition_1],
            layer_weights=[1, -1, -1])
    self.assertEqual(len(partition), 1)

class SurpriseVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(SurpriseVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.SurpriseVertexPartition

class SignificanceVertexPartitionTest(BaseTest.MutableVertexPartitionTest):
  def setUp(self):
    super(SignificanceVertexPartitionTest, self).setUp()
    self.partition_type = leidenalg.SignificanceVertexPartition

#%%
if __name__ == '__main__':
  #%%
  unittest.main(verbosity=3)
  suite = unittest.TestLoader().discover('.')
  unittest.TextTestRunner(verbosity=1).run(suite)