1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
// Float primitive operations
//
// These are registered in mypyc.primitives.float_ops.
#include <Python.h>
#include "CPy.h"
static double CPy_DomainError(void) {
PyErr_SetString(PyExc_ValueError, "math domain error");
return CPY_FLOAT_ERROR;
}
static double CPy_MathRangeError(void) {
PyErr_SetString(PyExc_OverflowError, "math range error");
return CPY_FLOAT_ERROR;
}
static double CPy_MathExpectedNonNegativeInputError(double x) {
char *buf = PyOS_double_to_string(x, 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
if (buf) {
PyErr_Format(PyExc_ValueError, "expected a nonnegative input, got %s", buf);
PyMem_Free(buf);
}
return CPY_FLOAT_ERROR;
}
static double CPy_MathExpectedPositiveInputError(double x) {
char *buf = PyOS_double_to_string(x, 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
if (buf) {
PyErr_Format(PyExc_ValueError, "expected a positive input, got %s", buf);
PyMem_Free(buf);
}
return CPY_FLOAT_ERROR;
}
static double CPy_MathExpectedFiniteInput(double x) {
char *buf = PyOS_double_to_string(x, 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
if (buf) {
PyErr_Format(PyExc_ValueError, "expected a finite input, got %s", buf);
PyMem_Free(buf);
}
return CPY_FLOAT_ERROR;
}
double CPyFloat_FromTagged(CPyTagged x) {
if (CPyTagged_CheckShort(x)) {
return CPyTagged_ShortAsSsize_t(x);
}
double result = PyFloat_AsDouble(CPyTagged_LongAsObject(x));
if (unlikely(result == -1.0) && PyErr_Occurred()) {
return CPY_FLOAT_ERROR;
}
return result;
}
double CPyFloat_Sin(double x) {
double v = sin(x);
if (unlikely(isnan(v)) && !isnan(x)) {
#if CPY_3_14_FEATURES
return CPy_MathExpectedFiniteInput(x);
#else
return CPy_DomainError();
#endif
}
return v;
}
double CPyFloat_Cos(double x) {
double v = cos(x);
if (unlikely(isnan(v)) && !isnan(x)) {
#if CPY_3_14_FEATURES
return CPy_MathExpectedFiniteInput(x);
#else
return CPy_DomainError();
#endif
}
return v;
}
double CPyFloat_Tan(double x) {
if (unlikely(isinf(x))) {
#if CPY_3_14_FEATURES
return CPy_MathExpectedFiniteInput(x);
#else
return CPy_DomainError();
#endif
}
return tan(x);
}
double CPyFloat_Sqrt(double x) {
if (x < 0.0) {
#if CPY_3_14_FEATURES
return CPy_MathExpectedNonNegativeInputError(x);
#else
return CPy_DomainError();
#endif
}
return sqrt(x);
}
double CPyFloat_Exp(double x) {
double v = exp(x);
if (unlikely(v == INFINITY) && x != INFINITY) {
return CPy_MathRangeError();
}
return v;
}
double CPyFloat_Log(double x) {
if (x <= 0.0) {
#if CPY_3_14_FEATURES
return CPy_MathExpectedPositiveInputError(x);
#else
return CPy_DomainError();
#endif
}
return log(x);
}
CPyTagged CPyFloat_Floor(double x) {
double v = floor(x);
return CPyTagged_FromFloat(v);
}
CPyTagged CPyFloat_Ceil(double x) {
double v = ceil(x);
return CPyTagged_FromFloat(v);
}
bool CPyFloat_IsInf(double x) {
return isinf(x) != 0;
}
bool CPyFloat_IsNaN(double x) {
return isnan(x) != 0;
}
// From CPython 3.10.0, Objects/floatobject.c
static void
_float_div_mod(double vx, double wx, double *floordiv, double *mod)
{
double div;
*mod = fmod(vx, wx);
/* fmod is typically exact, so vx-mod is *mathematically* an
exact multiple of wx. But this is fp arithmetic, and fp
vx - mod is an approximation; the result is that div may
not be an exact integral value after the division, although
it will always be very close to one.
*/
div = (vx - *mod) / wx;
if (*mod) {
/* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (*mod < 0)) {
*mod += wx;
div -= 1.0;
}
}
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator. */
*mod = copysign(0.0, wx);
}
/* snap quotient to nearest integral value */
if (div) {
*floordiv = floor(div);
if (div - *floordiv > 0.5) {
*floordiv += 1.0;
}
}
else {
/* div is zero - get the same sign as the true quotient */
*floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
}
}
double CPyFloat_FloorDivide(double x, double y) {
double mod, floordiv;
if (y == 0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero");
return CPY_FLOAT_ERROR;
}
_float_div_mod(x, y, &floordiv, &mod);
return floordiv;
}
// Adapted from CPython 3.10.7
double CPyFloat_Pow(double x, double y) {
if (!isfinite(x) || !isfinite(y)) {
if (isnan(x))
return y == 0.0 ? 1.0 : x; /* NaN**0 = 1 */
else if (isnan(y))
return x == 1.0 ? 1.0 : y; /* 1**NaN = 1 */
else if (isinf(x)) {
int odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0;
if (y > 0.0)
return odd_y ? x : fabs(x);
else if (y == 0.0)
return 1.0;
else /* y < 0. */
return odd_y ? copysign(0.0, x) : 0.0;
}
else if (isinf(y)) {
if (fabs(x) == 1.0)
return 1.0;
else if (y > 0.0 && fabs(x) > 1.0)
return y;
else if (y < 0.0 && fabs(x) < 1.0) {
#if PY_VERSION_HEX < 0x030B0000
if (x == 0.0) { /* 0**-inf: divide-by-zero */
return CPy_DomainError();
}
#endif
return -y; /* result is +inf */
} else
return 0.0;
}
}
double r = pow(x, y);
if (!isfinite(r)) {
if (isnan(r)) {
return CPy_DomainError();
}
/*
an infinite result here arises either from:
(A) (+/-0.)**negative (-> divide-by-zero)
(B) overflow of x**y with x and y finite
*/
else if (isinf(r)) {
if (x == 0.0)
return CPy_DomainError();
else
return CPy_MathRangeError();
}
}
return r;
}
|